Gaussian Random Permutation and the Boson Point Process

被引:0
|
作者
Inés Armendáriz
Pablo A. Ferrari
Sergio Yuhjtman
机构
[1] Universidad de Buenos Aires,Departmento de Matemática, Facultad de Ciencias Exactas y Naturales
[2] UBA-CONICET,Instituto de Matemática Manuel Santaló
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
We construct an infinite volume spatial random permutation (X,σ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$({{\textsf {X}}},\sigma )$$\end{document}, where X⊂Rd\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\textsf {X}}}\subset {\mathbb {R}}^d$$\end{document} is locally finite and σ:X→X\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sigma :{{\textsf {X}}}\rightarrow {{\textsf {X}}}$$\end{document} is a permutation, associated to the formal Hamiltonian H(X,σ)=∑x∈X‖x-σ(x)‖2.\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} H({{\textsf {X}}},\sigma ) = \sum _{x\in {{\textsf {X}}}} \Vert x-\sigma (x)\Vert ^2. \end{aligned}$$\end{document}The measures are parametrized by the point density ρ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\rho $$\end{document} and the temperature α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha $$\end{document}. Spatial random permutations are naturally related to boson systems through a representation originally due to Feynman (Phys Rev 91:1291–1301, 1953). Let ρc=ρc(α)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\rho _c=\rho _c(\alpha )$$\end{document} be the critical density for Bose–Einstein condensation in Feynman’s representation. Each finite cycle of σ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sigma $$\end{document} induces a loop of points of X\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\textsf {X}}}$$\end{document}. For ρ≤ρc\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\rho \le \rho _c$$\end{document} we define (X,σ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$({{\textsf {X}}}, \sigma )$$\end{document} as a Poisson process of finite unrooted loops of a random walk with Gaussian increments that we call Gaussian loop soup, analogous to the Brownian loop soup of Lawler and Werner (Probab Theory Related Fields 128(4):565–588, 2004). We also construct Gaussian random interlacements, a Poisson process of doubly infinite trajectories of random walks with Gaussian increments analogous to the Brownian random interlacements of Sznitman (Ann Math 2 171(3):2039–2087, 2010). For d≥3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d\ge 3$$\end{document} and ρ>ρc\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\rho >\rho _c$$\end{document} we define (X,σ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$({{\textsf {X}}},\sigma )$$\end{document} as the superposition of independent realizations of the Gaussian loop soup at density ρc\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\rho _c$$\end{document} and the Gaussian random interlacements at density ρ-ρc\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\rho -\rho _c$$\end{document}. In either case we call (X,σ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$({{\textsf {X}}}, \sigma )$$\end{document} a Gaussian random permutation at density ρ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\rho $$\end{document} and temperature α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha $$\end{document}. The resulting measure satisfies a Markov property and it is Gibbs for the Hamiltonian H. Its point marginal X\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\textsf {X}}}$$\end{document} has the same distribution as the boson point process introduced by Shirai-Takahashi (J Funct Anal 205(2):414–463, 2003) in the subcritical case, and by Tamura-Ito (J Funct Anal 243(1): 207–231, 2007) in the supercritical case.
引用
收藏
页码:1515 / 1547
页数:32
相关论文
共 50 条
  • [1] Gaussian Random Permutation and the Boson Point Process
    Armendariz, Ines
    Ferrari, Pablo A.
    Yuhjtman, Sergio
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2021, 387 (03) : 1515 - 1547
  • [2] Point processes with Gaussian boson sampling
    Jahangiri, Soran
    Arrazola, Juan Miguel
    Quesada, Nicolas
    Killoran, Nathan
    [J]. PHYSICAL REVIEW E, 2020, 101 (02)
  • [3] Boson random point processes and condensation
    V. A. Zagrebnov
    [J]. Physics of Particles and Nuclei, 2010, 41 : 885 - 890
  • [4] Boson random point processes and condensation
    Zagrebnov, V. A.
    [J]. PHYSICS OF PARTICLES AND NUCLEI, 2010, 41 (06) : 885 - 890
  • [5] Gaussian Process Random Fields
    Moore, David A.
    Russell, Stuart J.
    [J]. ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 28 (NIPS 2015), 2015, 28
  • [6] Permutation and Grouping Methods for Sharpening Gaussian Process Approximations
    Guinness, Joseph
    [J]. TECHNOMETRICS, 2018, 60 (04) : 415 - 429
  • [7] Efficient modeling of random fields by using Gaussian process inducing-point approximations
    Wang, Fan
    Chen, Jian Elton
    [J]. COMPUTERS AND GEOTECHNICS, 2023, 157
  • [8] Gaussian Process Latent Random Field
    Zhong, Guoqiang
    Li, Wu-Jun
    Yeung, Dit-Yan
    Hou, Xinwen
    Liu, Cheng-Lin
    [J]. PROCEEDINGS OF THE TWENTY-FOURTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE (AAAI-10), 2010, : 679 - 684
  • [9] Random process in a homogeneous Gaussian field
    Alkhimov V.I.
    [J]. Journal of Mathematical Sciences, 2010, 167 (6) : 727 - 740
  • [10] ESTIMATION OF PARAMETERS OF A GAUSSIAN RANDOM PROCESS
    ALEKSEEV, VG
    [J]. THEORY OF PROBILITY AND ITS APPLICATIONS,USSR, 1970, 15 (01): : 122 - &