The finding that the typicality gradient in goal-derived categories is mainly driven by ideals rather than by exemplar similarity has stood uncontested for nearly three decades. Due to the rather rigid earlier implementations of similarity, a key question has remained—that is, whether a more flexible approach to similarity would alter the conclusions. In the present study, we evaluated whether a similarity-based approach that allows for dimensional weighting could account for findings in goal-derived categories. To this end, we compared a computational model of exemplar similarity (the generalized context model; Nosofsky, Journal of Experimental Psychology. General 115:39–57, 1986) and a computational model of ideal representation (the ideal-dimension model; Voorspoels, Vanpaemel, & Storms, Psychonomic Bulletin & Review 18:1006-114, 2011) in their accounts of exemplar typicality in ten goal-derived categories. In terms of both goodness-of-fit and generalizability, we found strong evidence for an ideal approach in nearly all categories. We conclude that focusing on a limited set of features is necessary but not sufficient to account for the observed typicality gradient. A second aspect of ideal representations—that is, that extreme rather than common, central-tendency values drive typicality—seems to be crucial.