Let (tn) be a sequence of nonnegative real numbers tending to ∞, such that 1≤tn+1−tn≤α for all natural numbers n and some positive α. We prove that a strongly continuous semigroup {T(t)}t≥0, acting on a Hilbert space H, is uniformly exponentially stable if \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\sum_{n=0}^\infty\varphi\bigl(\bigl|\bigl\langle T(t_n)x, y\bigr\rangle\bigr|\bigr)<\infty, $$\end{document} for all unit vectors x, y in H. We obtain the same conclusion under the assumption that the inequality \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\sum_{n=0}^\infty\varphi\bigl(\bigl|\bigl\langle T(t_n)x, x^\ast\bigr\rangle\bigr|\bigr)<\infty, $$\end{document} is fulfilled for all unit vectors x∈X and x∗∈X∗, X being a reflexive Banach space. These results are stated for functions φ belonging to a special class of functions, such as defined in the second section of this paper. We conclude our paper with a Rolewicz’s type result in the continuous case on Hilbert spaces.