Weak real integral characterizations for exponential stability of semigroups in reflexive spaces

被引:0
|
作者
Constantin Buşe
Aftab Khan
Gul Rahmat
Olivia Saierli
机构
[1] West University of Timisoara,Department of Mathematics
[2] Government College University,Abdus Salam School of Mathematical Sciences (ASSMS)
[3] Tibiscus University of Timisoara,Department of Computer Sciences
来源
Semigroup Forum | 2014年 / 88卷
关键词
Uniform exponential stability; Rolewicz’s type theorems; Weak integral stability; Boundedness;
D O I
暂无
中图分类号
学科分类号
摘要
Let (tn) be a sequence of nonnegative real numbers tending to ∞, such that 1≤tn+1−tn≤α for all natural numbers n and some positive α. We prove that a strongly continuous semigroup {T(t)}t≥0, acting on a Hilbert space H, is uniformly exponentially stable if \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sum_{n=0}^\infty\varphi\bigl(\bigl|\bigl\langle T(t_n)x, y\bigr\rangle\bigr|\bigr)<\infty, $$\end{document} for all unit vectors x, y in H. We obtain the same conclusion under the assumption that the inequality \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sum_{n=0}^\infty\varphi\bigl(\bigl|\bigl\langle T(t_n)x, x^\ast\bigr\rangle\bigr|\bigr)<\infty, $$\end{document} is fulfilled for all unit vectors x∈X and x∗∈X∗, X being a reflexive Banach space. These results are stated for functions φ belonging to a special class of functions, such as defined in the second section of this paper. We conclude our paper with a Rolewicz’s type result in the continuous case on Hilbert spaces.
引用
收藏
页码:195 / 204
页数:9
相关论文
共 50 条
  • [1] Weak real integral characterizations for exponential stability of semigroups in reflexive spaces
    Buse, Constantin
    Khan, Aftab
    Rahmat, Gul
    Saierli, Olivia
    [J]. SEMIGROUP FORUM, 2014, 88 (01) : 195 - 204
  • [2] Integral characterizations for exponential stability of semigroups and evolution families on Banach spaces
    Buse, C.
    Barnett, N. S.
    Cerone, P.
    Dragomir, S. S.
    [J]. BULLETIN OF THE BELGIAN MATHEMATICAL SOCIETY-SIMON STEVIN, 2006, 13 (02) : 345 - 353
  • [4] Exponential stability of positive semigroups in Banach spaces
    Gudoshnikov, Ivan
    Kamenskii, Mikhail
    Nistri, Paolo
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2015, 429 (02) : 833 - 848
  • [5] Integral characterizations of uniform asymptotic and exponential stability with applications
    Teel, A
    Panteley, E
    Loría, A
    [J]. MATHEMATICS OF CONTROL SIGNALS AND SYSTEMS, 2002, 15 (03) : 177 - 201
  • [6] Integral Characterizations of Uniform Asymptotic and Exponential Stability with Applications
    Andrew Teel
    Elena Panteley
    Antonio Loría
    [J]. Mathematics of Control, Signals and Systems, 2002, 15 : 177 - 201
  • [7] Extremal characterizations of reflexive spaces
    Wang, Xianfu
    [J]. JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2007, 82 : 429 - 439
  • [8] Exponential stability and unstability of semigroups of linear operators in Banach spaces
    Megan, M
    Sasu, AL
    Sasu, B
    Pogan, A
    [J]. MATHEMATICAL INEQUALITIES & APPLICATIONS, 2002, 5 (03): : 557 - 567
  • [9] On weak exponential stability of evolution operators in Banach spaces
    Lupa, Nicolae
    Megan, Mihail
    Popa, Ioan-Lucian
    [J]. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2010, 73 (08) : 2445 - 2450
  • [10] Integral Characterizations for Uniform Stability with Growth Rates in Banach Spaces
    Boruga , Rovana
    Megan, Mihail
    Toth, Daniela Maria-Magdalena
    [J]. AXIOMS, 2021, 10 (03)