On a Functional Inequality of Alzer and Salinas

被引:0
|
作者
Włodzimierz Fechner
机构
[1] Lodz University of Technology,Institute of Mathematics
关键词
Functional inequality; Dini derivative; 39B62;
D O I
暂无
中图分类号
学科分类号
摘要
We deal with the functional inequality f(x)f(y)-f(xy)≤f(x)+f(y)-f(x+y)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} f(x)f(y) - f(xy) \le f (x) + f (y) - f(x+y) \end{aligned}$$\end{document}for f:R→R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f:{\mathbb {R}}\rightarrow {\mathbb {R}}$$\end{document}, which was introduced by Horst Alzer and Luis Salinas. We show that if f is a solution that is differentiable at 0 and f(0)=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f(0)=0$$\end{document}, then f=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f=0$$\end{document} on R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {R}}$$\end{document} or f(x)=x\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f(x) = x$$\end{document} for all x∈R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x \in {\mathbb {R}}$$\end{document}. Next, we prove that every solution f which satisfies some mild regularity and such that f(0)≠0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f(0)\ne 0$$\end{document} is globally bounded.
引用
收藏
页码:557 / 562
页数:5
相关论文
共 50 条
  • [1] On a Functional Inequality of Alzer and Salinas
    Fechner, Wlodzimierz
    [J]. COMPUTATIONAL METHODS AND FUNCTION THEORY, 2023, 23 (03) : 557 - 562
  • [2] ON AN INEQUALITY OF ALZER
    SANDOR, J
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1995, 192 (03) : 1034 - 1035
  • [3] On Alzer's inequality
    Elezovic, N
    Pecaric, J
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1998, 223 (01) : 366 - 369
  • [4] NOTE ON ALZER'S INEQUALITY
    Chen, Chao-Ping
    Qi, Feng
    [J]. TAMKANG JOURNAL OF MATHEMATICS, 2006, 37 (01): : 11 - 14
  • [5] A general form of Alzer's inequality
    Xu, ZK
    Xu, DP
    [J]. COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2002, 44 (3-4) : 365 - 373
  • [6] CONTINUOUS ANALOGUE OF ALZER'S INEQUALITY
    Zhang, Su-Ling
    Chen, Chao-Ping
    Qi, Feng
    [J]. TAMKANG JOURNAL OF MATHEMATICS, 2006, 37 (02): : 105 - 108
  • [7] A multivariate extension of an inequality of Brenner–Alzer
    Allal Guessab
    Otheman Nouisser
    Josip Pečarić
    [J]. Archiv der Mathematik, 2012, 98 : 277 - 287
  • [8] A generalization of the Alzer-Faiziev inequality
    Takahasi, SE
    Miura, Y
    [J]. UTILITAS MATHEMATICA, 1997, 51 : 3 - 8
  • [9] Extension of an inequality of H. Alzer
    Chen, Chao-Ping
    Qi, Feng
    [J]. MATHEMATICAL GAZETTE, 2006, 90 (518): : 293 - 295
  • [10] GENERALIZATION OF AN INEQUALITY OF ALZER FOR NEGATIVE POWERS
    Chen, Chao-Ping
    Qi, Feng
    [J]. TAMKANG JOURNAL OF MATHEMATICS, 2005, 36 (03): : 219 - 222