Cone characterization of Grothendieck spaces and Banach spaces containing c0

被引:0
|
作者
Ioannis A. Polyrakis
Foivos Xanthos
机构
[1] National Technical University of Athens,Department of Mathematics
来源
Positivity | 2011年 / 15卷
关键词
Cones; Bases for cones; Conic isomorphisms; Grothendieck spaces; 46B03; 46B40;
D O I
暂无
中图分类号
学科分类号
摘要
In this article we study the embeddability of cones in a Banach space X. First we prove that c0 is embeddable in X if and only if its positive cone \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${c_0^+}$$\end{document} is embeddable in X and we study some properties of Banach spaces containing c0 in the light of this result. So, unlike with the positive cone of ℓ1 which is embeddable in any non-reflexive space, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${c_0^+}$$\end{document} has the same behavior as the whole space c0. In the second part of this article we give a characterization of Grothendieck spaces X according to the geometry of cones of X*. By these results we give a partial positive answer to a problem of J.H. Qiu concerning the geometry of cones.
引用
收藏
页码:677 / 693
页数:16
相关论文
共 50 条