Cones;
Bases for cones;
Conic isomorphisms;
Grothendieck spaces;
46B03;
46B40;
D O I:
暂无
中图分类号:
学科分类号:
摘要:
In this article we study the embeddability of cones in a Banach space X. First we prove that c0 is embeddable in X if and only if its positive cone \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${c_0^+}$$\end{document} is embeddable in X and we study some properties of Banach spaces containing c0 in the light of this result. So, unlike with the positive cone of ℓ1 which is embeddable in any non-reflexive space, \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${c_0^+}$$\end{document} has the same behavior as the whole space c0. In the second part of this article we give a characterization of Grothendieck spaces X according to the geometry of cones of X*. By these results we give a partial positive answer to a problem of J.H. Qiu concerning the geometry of cones.
机构:
Departamento de Matemáticas, Escuela Politécnica Superior, Universidad de HuelvaDepartamento de Matemáticas, Escuela Politécnica Superior, Universidad de Huelva
Paneque F.
Piñeiro C.
论文数: 0引用数: 0
h-index: 0
机构:
Departamento de Matemáticas, Escuela Politécnica Superior, Universidad de HuelvaDepartamento de Matemáticas, Escuela Politécnica Superior, Universidad de Huelva