Block preconditioners for mixed-dimensional discretization of flow in fractured porous media

被引:0
|
作者
Ana Budiša
Xiaozhe Hu
机构
[1] University of Bergen,Department of Mathematics
[2] Tufts University,Department of Mathematics
来源
Computational Geosciences | 2021年 / 25卷
关键词
Porous medium; Fracture flow; Mixed finite element; Algebraic multigrid method; Iterative method; Preconditioning; 65F08; 65F10; 65N30;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we are interested in an efficient numerical method for the mixed-dimensional approach to modeling single-phase flow in fractured porous media. The model introduces fractures and their intersections as lower-dimensional structures, and the mortar variable is used for flow coupling between the matrix and fractures. We consider a stable mixed finite element discretization of the problem, which results in a parameter-dependent linear system. For this, we develop block preconditioners based on the well-posedness of the discretization choice. The preconditioned iterative method demonstrates robustness with regard to discretization and physical parameters. The analytical results are verified on several examples of fracture network configurations, and notable results in reduction of number of iterations and computational time are obtained.
引用
收藏
页码:671 / 686
页数:15
相关论文
共 50 条
  • [1] Block preconditioners for mixed-dimensional discretization of flow in fractured porous media
    Budisa, Ana
    Hu, Xiaozhe
    COMPUTATIONAL GEOSCIENCES, 2021, 25 (02) : 671 - 686
  • [2] Mixed-dimensional poromechanical models of fractured porous media
    Boon, W. M.
    Nordbotten, J. M.
    ACTA MECHANICA, 2023, 234 (03) : 1121 - 1168
  • [3] Mixed-dimensional poromechanical models of fractured porous media
    W. M. Boon
    J. M. Nordbotten
    Acta Mechanica, 2023, 234 : 1121 - 1168
  • [4] MIXED-DIMENSIONAL GEOMETRIC MULTIGRID METHODS FOR SINGLE-PHASE FLOW IN FRACTURED POROUS MEDIA
    Arraras, Andres
    Gaspar, Francisco J.
    Portero, Laura
    Rodrigo, Carmen
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2019, 41 (05): : B1082 - B1114
  • [5] A mixed-dimensional finite volume method for two-phase flow in fractured porous media
    Reichenberger, Volker
    Jakobs, Hartmut
    Bastian, Peter
    Helmig, Rainer
    ADVANCES IN WATER RESOURCES, 2006, 29 (07) : 1020 - 1036
  • [6] ROBUST DISCRETIZATION OF FLOW IN FRACTURED POROUS MEDIA
    Boon, Wietse M.
    Nordbotten, Jan M.
    Yotov, Ivan
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2018, 56 (04) : 2203 - 2233
  • [7] MIXED-DIMENSIONAL AUXILIARY SPACE PRECONDITIONERS
    Budisa, Ana
    Boon, Wietse M.
    Hu, Xiaozhe
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2020, 42 (05): : A3367 - A3396
  • [8] Unified approach to discretization of flow in fractured porous media
    J. M. Nordbotten
    W. M. Boon
    A. Fumagalli
    E. Keilegavlen
    Computational Geosciences, 2019, 23 : 225 - 237
  • [9] Unified approach to discretization of flow in fractured porous media
    Nordbotten, J. M.
    Boon, W. M.
    Fumagalli, A.
    Keilegavlen, E.
    COMPUTATIONAL GEOSCIENCES, 2019, 23 (02) : 225 - 237
  • [10] Physics-based preconditioners for flow in fractured porous media
    Sandve, T. H.
    Keilegavlen, E.
    Nordbotten, J. M.
    WATER RESOURCES RESEARCH, 2014, 50 (02) : 1357 - 1373