Mountain pass solution for the weighted Dirichlet (p(z),q(z))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$(p(z),q(z))$\end{document}-problem

被引:0
|
作者
Nadiyah Hussain Alharthi
Kholoud Saad Albalawi
Francesca Vetro
机构
[1] Imam Mohammad Ibn Saud Islamic University,Department of Mathematics and Statistics, College of Science
关键词
-Laplacian operator; -condition; Nonlinear regularity; Weak solution; 35J20; 35J92; 58E05;
D O I
10.1186/s13661-022-01621-1
中图分类号
学科分类号
摘要
We consider the Dirichlet boundary value problem for equations involving the (p(z),q(z))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$(p(z),q(z))$\end{document}-Laplacian operator in the principal part on an open bounded domain Ω⊂Rn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\Omega \subset \mathbb{R}^{n}$\end{document}. Here, the p(z)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$p(z)$\end{document}-Laplacian is weighted by a function a∈L∞(Ω)+\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$a \in L^{\infty}(\Omega )_{+}$\end{document}, and the nonlinearity in the reaction term is allowed to depend on the solution without imposing the Ambrosetti–Rabinowitz condition. The proof of the existence of solution to our problem is based on a mountain pass critical point approach with the Cerami condition at level c.
引用
收藏
相关论文
共 50 条