Sparsity of solutions for variational inverse problems with finite-dimensional data

被引:0
|
作者
Kristian Bredies
Marcello Carioni
机构
[1] University of Graz,Institute of Mathematics and Scientific Computing
关键词
49J45; 49N45; 52A05; 49N15;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we characterize sparse solutions for variational problems of the form minu∈Xϕ(u)+F(Au)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\min _{u\in X} \phi (u) + F(\mathcal {A}u)$$\end{document}, where X is a locally convex space, A\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {A}$$\end{document} is a linear continuous operator that maps into a finite dimensional Hilbert space and ϕ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\phi $$\end{document} is a seminorm. More precisely, we prove that there exists a minimizer that is “sparse” in the sense that it is represented as a linear combination of the extremal points of the unit ball associated with the regularizer ϕ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\phi $$\end{document} (possibly translated by an element in the null space of ϕ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\phi $$\end{document}). We apply this result to relevant regularizers such as the total variation seminorm and the Radon norm of a scalar linear differential operator. In the first example, we provide a theoretical justification of the so-called staircase effect and in the second one, we recover the result in Unser et al. (SIAM Rev 59(4):769–793, 2017) under weaker hypotheses.
引用
收藏
相关论文
共 50 条