Linear estimation under the Gauss–Helmert model: geometrical interpretation and general solution

被引:0
|
作者
Yu Hu
Xing Fang
机构
[1] Wuhan University,School of Geodesy and Geomatics
来源
Journal of Geodesy | 2023年 / 97卷
关键词
Gauss–Helmert model; Least-squares adjustment; Singular dispersion matrix; Geometric interpretation; Neitzel–Schaffrin rank condition; S-transformation; -homBLE; -homBLUMBE;
D O I
暂无
中图分类号
学科分类号
摘要
Although the least-squares (LS) adjustment within the Gauss–Markoff model (GMM) and the model with condition equations as dual problem have been geometrically interpreted, no one merged the LS adjustment formulated by the Gauss–Helmert model (GHM) also into the common pattern. We formulate the GHM from the GMM based on a partial orthogonality between their respective coefficient matrices. Then, the LS adjustment within these three models is interpreted geometrically, which implies that the GHM is not the combined model but the intermediate model between the GMM and the model of conditional equations. Meanwhile, the case of a singular dispersion matrix is analyzed once more, but now in the most general way, where the restriction of the Neitzel–Schaffrin rank condition is relaxed. The findings of this part can be summarized as: (1) The LS solution is developed within the general GHM, which yields the unique best linear uniformly unbiased estimation if the parameter coefficient matrix is of full rank; (2) We demonstrated that Baarda’s S-transformation also holds with the most general model setup; (3) In the general case, we proved that the unique S\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{S}$$\end{document}-homBLUMBE (best homogeneously linear uniformly minimum bias estimation) can be achieved by S-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{S}^{-1}$$\end{document}-norm minimization within the LS solution set; (4) The S\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{S}$$\end{document}-homBLE (best homogeneously linear estimation) type is analyzed for the GHM for the first time, and we find it can function as the intermediate algebraic connection between the LS and the S\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{S}$$\end{document}-homBLUMBE solution.
引用
收藏
相关论文
共 50 条
  • [1] Linear estimation under the Gauss-Helmert model: geometrical interpretation and general solution
    Hu, Yu
    Fang, Xing
    JOURNAL OF GEODESY, 2023, 97 (05)
  • [2] Pareto optimality solution of the Gauss-Helmert model
    Palancz, B.
    Awange, J. L.
    Voelgyesi, L.
    ACTA GEODAETICA ET GEOPHYSICA, 2013, 48 (03) : 293 - 304
  • [3] Pareto optimality solution of the Gauss-Helmert model
    B. Paláncz
    J. L. Awange
    L. Völgyesi
    Acta Geodaetica et Geophysica, 2013, 48 : 293 - 304
  • [4] On least-squares solution to 3D similarity transformation problem under Gauss–Helmert model
    Guobin Chang
    Journal of Geodesy, 2015, 89 : 573 - 576
  • [5] On homotopy method to parameter estimation for generalized nonlinear Gauss-Helmert model
    Hu, Chuan
    Shi, Zonghao
    Ren, Daqin
    Cehui Xuebao/Acta Geodaetica et Cartographica Sinica, 2024, 53 (11): : 2178 - 2188
  • [6] Estimation under a general partitioned linear model
    Gross, J
    Puntanen, S
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2000, 321 (1-3) : 131 - 144
  • [7] On least-squares solution to 3D similarity transformation problem under Gauss-Helmert model
    Chang, Guobin
    JOURNAL OF GEODESY, 2015, 89 (06) : 573 - 576
  • [8] A novel sequential solution for multi-period observations based on the Gauss-Helmert model
    Zhou, Tengfei
    Lin, Peng
    Zhang, Songlin
    Zhang, Jingxia
    Fang, Jiawei
    MEASUREMENT, 2022, 193
  • [9] A Nonlinear Gauss-Helmert Model and Its Robust Solution for Seafloor Control Point Positioning
    Kuang, Yingcai
    Lu, Zhiping
    Wang, Fangchao
    Yang, Kaichun
    Li, Linyang
    MARINE GEODESY, 2023, 46 (01) : 16 - 42
  • [10] Point Cloud Fitting Method Using the Nonlinear Gauss-Helmert Model and Robust Estimation
    Zhao, Zhisheng
    Chen, Yu
    Wang, Bin
    Wuhan Daxue Xuebao (Xinxi Kexue Ban)/Geomatics and Information Science of Wuhan University, 2024, 49 (07): : 1201 - 1211