Uniqueness of codes using semidefinite programming

被引:0
|
作者
Andries E. Brouwer
Sven C. Polak
机构
[1] University of Amsterdam,Korteweg
来源
关键词
Code; Binary code; Uniqueness; Semidefinite programming; Golay; 94B99; 05B30;
D O I
暂无
中图分类号
学科分类号
摘要
For n,d,w∈N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n,d,w \in \mathbb {N}$$\end{document}, let A(n, d, w) denote the maximum size of a binary code of word length n, minimum distance d and constant weight w. Schrijver recently showed using semidefinite programming that A(23,8,11)=1288\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$A(23,8,11)=1288$$\end{document}, and the second author that A(22,8,11)=672\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$A(22,8,11)=672$$\end{document} and A(22,8,10)=616\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$A(22,8,10)=616$$\end{document}. Here we show uniqueness of the codes achieving these bounds. Let A(n, d) denote the maximum size of a binary code of word length n and minimum distance d. Gijswijt et al. showed that A(20,8)=256\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$A(20,8)=256$$\end{document}. We show that there are several nonisomorphic codes achieving this bound, and classify all such codes with all distances divisible by 4.
引用
收藏
页码:1881 / 1895
页数:14
相关论文
共 50 条
  • [1] Uniqueness of codes using semidefinite programming
    Brouwer, Andries E.
    Polak, Sven C.
    [J]. DESIGNS CODES AND CRYPTOGRAPHY, 2019, 87 (08) : 1881 - 1895
  • [2] Bounds for codes by semidefinite programming
    O. R. Musin
    [J]. Proceedings of the Steklov Institute of Mathematics, 2008, 263 : 134 - 149
  • [3] Bounds for codes by semidefinite programming
    Musin, O. R.
    [J]. PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS, 2008, 263 (01) : 134 - 149
  • [4] Semidefinite programming for permutation codes
    Bogaerts, Mathieu
    Dukes, Peter
    [J]. DISCRETE MATHEMATICS, 2014, 326 : 34 - 43
  • [5] Strengthened semidefinite programming bounds for codes
    Monique Laurent
    [J]. Mathematical Programming, 2007, 109 : 239 - 261
  • [6] Strengthened semidefinite programming bounds for codes
    Laurent, Monique
    [J]. MATHEMATICAL PROGRAMMING, 2007, 109 (2-3) : 239 - 261
  • [7] Semidefinite programming bounds for spherical codes
    Bachoc, Christine
    Vallentin, Frank
    [J]. 2007 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY PROCEEDINGS, VOLS 1-7, 2007, : 1801 - +
  • [8] Bounds for codes via semidefinite programming
    Musin, Oleg R.
    [J]. 2009 INFORMATION THEORY AND APPLICATIONS WORKSHOP, 2009, : 234 - 236
  • [9] Semidefinite programming bounds for Lee codes
    Polak, Sven C.
    [J]. DISCRETE MATHEMATICS, 2019, 342 (09) : 2579 - 2589
  • [10] Existence and Uniqueness of the Central Path for Semidefinite Programming
    Gao Lei-fu
    Chang Xiao-kai
    Feng Chang-li
    [J]. 2009 INTERNATIONAL CONFERENCE ON MODELING, SIMULATION AND OPTIMIZATION, PROCEEDINGS, 2009, : 253 - 256