Perelman's λ-functional and Seiberg-Witten equations

被引:0
|
作者
Fang F. [1 ]
Zhang Y. [1 ]
机构
[1] Department of Mathematics, Capital Normal University
基金
中国国家自然科学基金;
关键词
Perelman's λ-functional; Ricci-flow; Seiberg-Witten equations;
D O I
10.1007/s11464-007-0014-5
中图分类号
学科分类号
摘要
In this paper, we estimate the supremum of Perelman's λ-functional λ M (g) on Riemannian 4-manifold (M, g) by using the Seiberg-Witten equations. Among other things, we prove that, for a compact Kähler-Einstein complex surface (M, J, g 0) with negative scalar curvature, (i) if g 1 is a Riemannian metric on M with λ M (g 1) = λ M (g 0), then Volg1 (M) ≥ Volg0 (M). Moreover, the equality holds if and only if g 1 is also a Kähler-Einstein metric with negative scalar curvature. (ii) If {g t}, t [-1, 1], is a family of Einstein metrics on M with initial metric g 0, then g t is a Kähler-Einstein metric with negative scalar curvature. © Higher Education Press 2007.
引用
收藏
页码:191 / 210
页数:19
相关论文
共 50 条