On Orlicz–Sobolev Classes on Quotient Spaces

被引:0
|
作者
Sevost’yanov E.A. [1 ,2 ]
机构
[1] Zhytomyr Ivan Franko State University, Zhytomyr
[2] Institute of Applied Mathematics and Mechanics of the NAS of Ukraine, Slavyansk
关键词
local and boundary behavior of mappings; mappings with finite and bounded distortion; moduli of families of curves;
D O I
10.1134/S1055134421030044
中图分类号
学科分类号
摘要
Abstract: We study the quotient spaces of the unit ball by some group of Möbiustransformations. For mappings of such spaces, we obtain a bound for the distortion of a modulusof a family of spheres. As an application, we prove theorems on the local and boundary behaviorof Orlicz–Sobolev classes on the quotient spaces. © 2021, Pleiades Publishing, Ltd.
引用
收藏
页码:209 / 228
页数:19
相关论文
共 50 条
  • [1] Normality of the Orlicz–Sobolev Classes
    V. I. Ryazanov
    R. R. Salimov
    E. A. Sevost’yanov
    Ukrainian Mathematical Journal, 2016, 68 : 115 - 126
  • [2] On fractional Orlicz–Sobolev spaces
    Angela Alberico
    Andrea Cianchi
    Luboš Pick
    Lenka Slavíková
    Analysis and Mathematical Physics, 2021, 11
  • [3] APPROXIMATION IN SOBOLEV-ORLICZ AND SOBOLEV SPACES
    FOUGERES, A
    COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES SERIE A, 1972, 274 (06): : 479 - &
  • [4] On the removal of singularities of the Orlicz–Sobolev classes
    Sevost’yanov E.A.
    Salimov R.R.
    Petrov E.A.
    Journal of Mathematical Sciences, 2017, 222 (6) : 723 - 740
  • [5] Metric Properties of Orlicz–Sobolev Classes
    Salimov R.R.
    Journal of Mathematical Sciences, 2017, 220 (5) : 633 - 642
  • [6] Normality of the Orlicz-Sobolev Classes
    Ryazanov, V. I.
    Salimov, R. R.
    Sevost'yanov, E. A.
    UKRAINIAN MATHEMATICAL JOURNAL, 2016, 68 (01) : 115 - 126
  • [7] TRACE SPACES OF SOBOLEV-ORLICZ SPACES
    LACROIX, MT
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 1974, 53 (04): : 439 - 458
  • [8] On the Equicontinuity of Homeomorphisms of Orlicz and Orlicz–Sobolev Classes in the Closure of a Domain
    E. A. Sevost’yanov
    E. A. Petrov
    Ukrainian Mathematical Journal, 2018, 69 : 1821 - 1834
  • [9] ORLICZ AND SOBOLEV SPACES ON UNBOUNDED DOMAINS
    EDMUNDS, DE
    EVANS, WD
    PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1975, 342 (1630): : 373 - 400
  • [10] Interpolation operators in Orlicz–Sobolev spaces
    L. Diening
    M. Růžička
    Numerische Mathematik, 2007, 107 : 107 - 129