Integration of Primal Lower Nice Functions in Hilbert Spaces

被引:0
|
作者
F. Bernard
L. Thibault
D. Zagrodny
机构
[1] Université Montpellier II,Département de Mathématiques
[2] Université Montpellier II,Département de Mathématiques
[3] Cardinal Stefan Wiszynski University,Department of Mathematics
关键词
Primal lower nice functions; Moreau envelopes; proximal mappings; subdifferentials;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we obtain some integration results from subdifferential inclusions for primal lower nice functions by using the Moreau envelopes. A general result concerns an enlarged subdifferential inclusion. It says that, for g primal lower nice at x, the inclusion \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\partial f \subset g + \gamma \mathbb{B}$$\end{document} around x entails that, for any γ′]0; γ[, f − g is γ′∈- Lipschitz continuous on an appropriate neighborhood of x.
引用
收藏
页码:561 / 579
页数:18
相关论文
共 50 条