The highest incidence and mortality rate of lung cancer in rural area of Fuyuan has been a research hotspot, and the pathogenesis is still unclear. Therefore, atmospheric particulate matters (APMs) samples were collected between 18 February and 01 March 2017, exploring water-soluble potentially toxic metals (WSPTMs) and water-soluble inorganic ionic species (WSIIs) levels, size distribution, sources, acidity and alkalinity, and potential carcinogenic and non-carcinogenic risks, hoping to provide scientific basic data to solve this problem. In our study, the average ratio of nitrate ion (NO3−)/sulfate ion (SO42−) within PM1.1, PM1.1–2.0, PM2.0–3.3, PM3.3–7.0, and PM>7.0 were 0.22, 0.18, 0.15, 0.34 and 0.36, respectively, that revealed that combustion sources contributed to PM were more significant. The anions in equilibrium (ANE) / cations in equilibrium (CAE) < 1 for all samples within PM1.1, PM2.0–3.3, PM3.3–7.0 indicate that the APMs were alkaline, but PM1.1–2.0 particulate matter shows weak acidity. SO42− prefers to combine with NH4+ to form (NH4)2SO4, which hinders the formation of NH4NO3, the remaining SO42− and NO3− to neutralize the K+, KNO3 was formed at all particulate, however, K2SO4 can only be formed in PM<3.3. Arsenic (As) and Selenium (Se) were identified as the most enriched WSPTMs in all PM sizes, predominantly from anthropogenic emissions, were suggested that coal combustion is a significant source of PM-bound WSPTMs. Total WSPTMs exhibited high total carcinogenic risks (TCR) values (9.98 × 10–6, 1.06 × 10–5, and 1.19 × 10–5 for girls, boys and adults, respectively) in the smaller particles (< 1.1 μm). Se was considered as the major contributor (63.60%) to carcinogenic risk (CR) in PM2.0 and had an inverse relationship with PM size that should be of prime concern.