Equation of nonlinear waves in a scattering medium

被引:0
|
作者
O. V. Rudenko
V. A. Robsman
机构
[1] Moscow State University,
[2] Research Institute of Transport Building,undefined
来源
Doklady Physics | 2002年 / 47卷
关键词
Nonlinear Wave;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
页码:443 / 446
页数:3
相关论文
共 50 条
  • [1] Equation of nonlinear waves in a scattering medium
    Rudenko, OV
    Robsman, VA
    DOKLADY PHYSICS, 2002, 47 (06) : 443 - 446
  • [2] Inverse medium scattering for a nonlinear Helmholtz equation
    Griesmaier, Roland
    Knoeller, Marvin
    Mandel, Rainer
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2022, 515 (01)
  • [3] NONLINEAR-INTERACTION OF SOUND-WAVES IN A SCATTERING MEDIUM
    ESIPOV, IB
    STEPANOV, YS
    SOVIET PHYSICS ACOUSTICS-USSR, 1988, 34 (05): : 489 - 492
  • [4] SCATTERING AND TRANSFORMATION OF NONLINEAR PERIODIC-WAVES IN AN INHOMOGENEOUS MEDIUM
    ZASLAVSKII, GM
    ZHURNAL EKSPERIMENTALNOI I TEORETICHESKOI FIZIKI, 1972, 62 (06): : 2129 - 2140
  • [5] New optical solitary waves for unstable Schrodinger equation in nonlinear medium
    Zhou, Qin
    Rezazadeh, Hadi
    Korkmaz, Alper
    Eslami, Mostafa
    Mirzazadeh, Mohammad
    Rezazadeh, Mohammadreza
    OPTICA APPLICATA, 2019, 49 (01) : 135 - 150
  • [6] KINK WAVES IN AN EXTENDED NONLINEAR SCHRODINGER EQUATION WITH ALLOWANCE FOR STIMULATED SCATTERING AND NONLINEAR DISPERSION
    Gromov, E. M.
    Tyutin, V. V.
    RADIOPHYSICS AND QUANTUM ELECTRONICS, 2014, 57 (04) : 279 - 286
  • [8] Kink Waves in an Extended Nonlinear Schrödinger Equation with Allowance for Stimulated Scattering and Nonlinear Dispersion
    E. M. Gromov
    V. V. Tyutin
    Radiophysics and Quantum Electronics, 2014, 57 : 279 - 286
  • [9] The nonlinear superposition between anomalous scattering of lumps and other waves for KPI equation
    Zhang, Zhao
    Li, Biao
    Chen, Junchao
    Guo, Qi
    NONLINEAR DYNAMICS, 2022, 108 (04) : 4157 - 4169
  • [10] The nonlinear superposition between anomalous scattering of lumps and other waves for KPI equation
    Zhao Zhang
    Biao Li
    Junchao Chen
    Qi Guo
    Nonlinear Dynamics, 2022, 108 : 4157 - 4169