On the Topology of the Atmosphere Advected by a Periodic Array of Axisymmetric Thin-cored Vortex Rings

被引:0
|
作者
Emad Masroor
Mark A. Stremler
机构
[1] Engineering Mechanics Program,
[2] Virginia Polytechnic Institute & State University,undefined
[3] Department of Biomedical Engineering & Mechanics,undefined
[4] Virginia Polytechnic Institute & State University,undefined
来源
关键词
vortex rings; integrability; streamline topology; bifurcations;
D O I
暂无
中图分类号
学科分类号
摘要
The fluid motion produced by a spatially periodic array of identical, axisymmetric, thin-cored vortex rings is investigated. It is well known that such an array moves uniformly without change of shape or form in the direction of the central axis of symmetry, and is therefore an equilibrium solution of Euler’s equations. In a frame of reference moving with the system of vortex rings, the motion of passive fluid particles is investigated as a function of the two nondimensional parameters that define this system: \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varepsilon=a/R$$\end{document}, the ratio of minor radius to major radius of the torus-shaped vortex rings, and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda=L/R$$\end{document}, the separation of the vortex rings normalized by their radii. Two bifurcations in the streamline topology are found that depend significantly on \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varepsilon$$\end{document} and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda$$\end{document}; these bifurcations delineate three distinct shapes of the “atmosphere” of fluid particles that move together with the vortex ring for all time. Analogous to the case of an isolated vortex ring, the atmospheres can be “thin-bodied” or “thick-bodied”. Additionally, we find the occurrence of a “connected” system, in which the atmospheres of neighboring rings touch at an invariant circle of fluid particles that is stationary in a frame of reference moving with the vortex rings.
引用
收藏
页码:183 / 197
页数:14
相关论文
共 3 条
  • [1] On the Topology of the Atmosphere Advected by a Periodic Array of Axisymmetric Thin-cored Vortex Rings
    Masroor, Emad
    Stremler, Mark A.
    REGULAR & CHAOTIC DYNAMICS, 2022, 27 (02): : 183 - 197
  • [2] High-frequency vortex matching effects in Pb thin films with a periodic array of antidots
    Cuadra-Solis, P. J.
    Hernandez, J. M.
    Garcia-Santiago, A.
    Tejada, J.
    Vanacken, J.
    Moshchalkov, V. V.
    PHYSICA C-SUPERCONDUCTIVITY AND ITS APPLICATIONS, 2008, 468 (7-10): : 777 - 780
  • [3] Vortex matching at 6 T in YBa2Cu3O7-δ 2 Cu 3 O 7-δ thin films by imprinting a 20-nm periodic pinning array with a focused helium-ion beam
    Karrer, Max
    Aichner, Bernd
    Wurster, Katja
    Magen, Cesar
    Schmid, Christoph
    Hutt, Robin
    Budinska, Barbora
    Dobrovolskiy, Oleksandr V.
    Kleiner, Reinhold
    Lang, Wolfgang
    Goldobin, Edward
    Koelle, Dieter
    PHYSICAL REVIEW APPLIED, 2024, 22 (01):