Potential influence of sulphur bacteria on Palaeoproterozoic phosphogenesis

被引:0
|
作者
Lepland A. [1 ,2 ,3 ]
Joosu L. [4 ]
Kirsimäe K. [4 ]
Prave A.R. [5 ]
Romashkin A.E. [6 ]
Črne A.E. [1 ,7 ]
Martin A.P. [8 ,12 ]
Fallick A.E. [9 ]
Somelar P. [4 ]
Üpraus K. [4 ]
Mänd K. [4 ]
Roberts N.M.W. [8 ]
Van Zuilen M.A. [10 ]
Wirth R. [11 ]
Schreiber A. [11 ]
机构
[1] Geological Survey of Norway
[2] Tallinn University of Technology, Institute of Geology, Estonia
[3] Centre for Arctic Gas Hydrate, Environment and Climate, University of Tromsø
[4] University of Tartu, Department of Geology
[5] Department of Earth and Environmental Sciences, University of St Andrews
[6] Institute of Geology, Karelian Science Centre, 185610 Petrozavodsk
[7] Ivan Rakovec Institute of Paleontology, ZRC, SAZU
[8] NERC Isotope Geosciences Laboratory, British Geological Survey, Keyworth
[9] Scottish Universities, Environmental Research Centre, Scottish Enterprise Technology Park, East Kilbride, G75 0QF, Rankine Avenue
[10] Géobiosphère Actuelle et Primitive, Institut de Physique du Globe de Paris, Université Paris Diderot, 75238 Paris cedex 5
[11] GeoForschungsZentrum Potsdam, Telegrafenberg, Chemistry and Physics of Earth Materials
[12] GNS Science, 9054 Dunedin
基金
英国自然环境研究理事会;
关键词
D O I
10.1038/ngeo2005
中图分类号
学科分类号
摘要
All known forms of life require phosphorus, and biological processes strongly influence the global phosphorus cycle. Although the record of life on Earth extends back to 3.8 billion years ago and the advent of biological phosphate processing can be tracked to at least 3.5 billion years ago, the earliest known P-rich deposits appeared only 2 billion years ago. The onset of P deposition has been attributed to the rise of atmospheric oxygen 2.4-2.3 billion years ago and the related profound biogeochemical shifts, which increased the riverine input of phosphate to the ocean and boosted biological productivity and phosphogenesis. However, the P-rich deposits post-date the rise of oxygen by about 300 million years. Here we use microfabric, trace element and carbon isotope analyses to assess the environmental setting and redox conditions of the 2-billion-year-old P-rich deposits of the vent-or seep-influenced Zaonega Formation, northwest Russia. We identify phosphatized microorganism fossils that resemble modern methanotrophic archaea and sulphur-oxidizing bacteria, analogous to organisms found in modern seep settings and upwelling zones with a sharp redoxcline. We therefore propose that the P-rich deposits in the Zaonega Formation were formed by phosphogenesis mediated by sulphur bacteria, similar to modern sites, and by the precipitation of calcium phosphate minerals on microbial templates during early diagenesis. © 2014 Macmillan Publishers Limited.
引用
收藏
页码:20 / 24
页数:4
相关论文
共 50 条
  • [1] Potential influence of sulphur bacteria on Palaeoproterozoic phosphogenesis
    Lepland, Aivo
    Joosu, Lauri
    Kirsimaee, Kalle
    Prave, Anthony R.
    Romashkin, Alexander E.
    Crne, Alenka E.
    Martin, Adam P.
    Fallick, Anthony E.
    Somelar, Peeter
    Uepraus, Kaert
    Maend, Kaarel
    Roberts, Nick M. W.
    van Zuilen, Mark A.
    Wirth, Richard
    Schreiber, Anja
    NATURE GEOSCIENCE, 2014, 7 (01) : 20 - 24
  • [2] Biomarker evidence for green and purple sulphur bacteria in a stratified Palaeoproterozoic sea
    Brocks, JJ
    Love, GD
    Summons, RE
    Knoll, AH
    Logan, GA
    Bowden, SA
    NATURE, 2005, 437 (7060) : 866 - 870
  • [3] Biomarker evidence for green and purple sulphur bacteria in a stratified Palaeoproterozoic sea
    Jochen J. Brocks
    Gordon D. Love
    Roger E. Summons
    Andrew H. Knoll
    Graham A. Logan
    Stephen A. Bowden
    Nature, 2005, 437 : 866 - 870
  • [4] INFLUENCE OF BACTERIA OF SULPHUR CYCLE ON LEAD CORROSION.
    Yanover, S.B.
    Lisaya, A.I.
    Lunev, O.A.
    Kozlova, I.A.
    Purish, L.M.
    Zvyagintseva, N.P.
    Andreyuk, E.I.
    Key Engineering Materials, 1987, 20-28 (pt 1-4)
  • [5] ORTHORHOMBIC SULPHUR FORMED BY PHOTOSYNTHETIC SULPHUR BACTERIA
    TRUPER, HG
    HATHAWAY, JC
    NATURE, 1967, 215 (5099) : 435 - &
  • [6] Studies on the sulphur bacteria
    Becking, LGMB
    ANNALS OF BOTANY, 1925, 39 (155) : 613 - U13
  • [7] THE OXIDATION OF INORGANIC COMPOUNDS OF SULPHUR BY VARIOUS SULPHUR BACTERIA
    PARKER, CD
    PRISK, J
    JOURNAL OF GENERAL MICROBIOLOGY, 1953, 8 (03): : 344 - 364
  • [8] Filamentous sulfur bacteria preserved in modern and ancient phosphatic sediments: implications for the role of oxygen and bacteria in phosphogenesis
    Bailey, J. V.
    Corsetti, F. A.
    Greene, S. E.
    Crosby, C. H.
    Liu, P.
    Orphan, V. J.
    GEOBIOLOGY, 2013, 11 (05) : 397 - 405
  • [9] On the metabolism of the purple sulphur bacteria
    Roelofsen, PA
    PROCEEDINGS OF THE KONINKLIJKE AKADEMIE VAN WETENSCHAPPEN TE AMSTERDAM, 1934, 37 (6/10): : 660 - 669
  • [10] The metabolism of sulphur bacteria.
    von Deines, O
    NATURWISSENSCHAFTEN, 1933, 21 : 873 - 876