Closed Groups of Automorphisms of Products of Hyperbolic Riemann Surfaces

被引:0
|
作者
Evgeny A. Poletsky
Sergey E. Sharonov
机构
[1] Syracuse University,Department of Mathematics
来源
关键词
Automorphisms of complex manifolds; Stabilizers; Exponential Lie groups; Non-discrete subgroups; Primary 32M05; Secondary 54H15;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we provide the complete list of all closed groups G of automorphisms of a product R of hyperbolic Riemann surfaces such that the order of any element in G/Ge\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\textit{G/G}_e$$\end{document}, where Ge\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G_e$$\end{document} is the identity component of G, is finite. In particular, if X is an analytic subvariety of R then the identity component of the stabilizer of X in AutR\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\text {Aut}}R$$\end{document} is on this list. In its turn, it allows us to state that the identity component of the group AutX\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\text {Aut}}X$$\end{document} must contain a group from this list.
引用
收藏
页码:3690 / 3707
页数:17
相关论文
共 50 条