On a problem of Erdős and Rado

被引:0
|
作者
Jean A. Larson
William J. Mitchell
机构
[1] University of Florida,Department of Mathematics
关键词
05C55; 05C20; 03E10; digraph; Ramsey; partition; ordinal; graph; transitive tournament;
D O I
10.1007/BF02558478
中图分类号
学科分类号
摘要
We give some improved estimates for the digraph Ramsey numbersr(Kn*,Lm), the smallest numberp such that any digraph of orderp either has an independent set ofn vertices or contains a transitive tournament of orderm.
引用
收藏
页码:245 / 252
页数:7
相关论文
共 50 条
  • [1] On the Erdős–Ko–Rado property for finite groups
    Mohammad Bardestani
    Keivan Mallahi-Karai
    Journal of Algebraic Combinatorics, 2015, 42 : 111 - 128
  • [2] The Erdős–Ko–Rado Theorem for Integer Sequences
    Peter Frankl
    Norihide Tokushige
    Combinatorica, 1999, 19 : 55 - 63
  • [3] A Bollobás-Type Problem: From Root Systems to Erdős-Ko-Rado
    Browne, Patrick J.
    Gashi, Qendrim R.
    Cathain, Padraig O.
    ANNALS OF COMBINATORICS, 2024,
  • [4] On the stability of the Erdös-Ko-Rado theorem
    M. M. Pyaderkin
    Doklady Mathematics, 2015, 91 : 290 - 293
  • [5] Probabilistic Extensions of the Erdős–Ko–Rado Property
    Anna Celaya
    Anant P. Godbole
    Mandy Rae Schleifer
    Methodology and Computing in Applied Probability, 2006, 8 : 357 - 371
  • [6] Erds-Ko-Rado Theorems of Labeled Sets
    Xing-bo GENG1
    Acta Mathematicae Applicatae Sinica, 2012, (01) : 127 - 130
  • [7] Erdös-Ko-Rado theorem for ladder graphs
    Yu-shuang Li
    Hua-jun Zhang
    Acta Mathematicae Applicatae Sinica, English Series, 2014, 30 : 583 - 588
  • [8] Erds-Ko-Rado theorems in certain semilattices
    GUO Jun
    MA JianMin
    WANG KaiShun
    ScienceChina(Mathematics), 2013, 56 (11) : 2393 - 2407
  • [9] Erdős-Ko-Rado theorems of labeled sets
    Xing-bo Geng
    Yu-shuang Li
    Acta Mathematicae Applicatae Sinica, English Series, 2012, 28 : 127 - 130
  • [10] Erdős-Ko-Rado theorems in certain semilattices
    Jun Guo
    JianMin Ma
    KaiShun Wang
    Science China Mathematics, 2013, 56 : 2393 - 2407