The dependence of the northern extratropical climate response to external forcing on the phase of Atlantic Multidecadal Variability

被引:0
|
作者
S. R. Hyatt
C. G. Fletcher
C. Cassou
Y. Ruprich-Robert
L. Terray
机构
[1] University of Waterloo,Department of Applied Mathematics
[2] University of Waterloo,Department of Geography and Environmental Management
[3] Université de Toulouse,undefined
[4] CECI,undefined
[5] CNRS-Cerfacs,undefined
[6] Barcelona Supercomputing Center,undefined
[7] CNRS-CERFACS,undefined
来源
Climate Dynamics | 2020年 / 55卷
关键词
Internal variability; Atlantic Multidecadal Variability; Climate modelling; Tropical-extratropical teleconnections; Dynamics;
D O I
暂无
中图分类号
学科分类号
摘要
The extent to which decadal-to-multidecadal climate trends forced by carbon dioxide (CO2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\text{CO}_2$$\end{document}) and anthropogenic aerosol (AER) emissions depend on the phase and amplitude of internal modes of climate variability, such as Atlantic Multidecadal Variability (AMV), is an open question. This study uses a fully coupled CMIP5-era general circulation model (GCM) to investigate climate trends forced by increasing CO2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\text{CO}_2$$\end{document} and AER in the presence of opposite decaying phases of the AMV. Ensembles of simulations are initialized from extreme warm (AMV(+)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\text{AMV}_{(+)}$$\end{document}) and cold (AMV(-)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\text{AMV}_{(-)}$$\end{document}) phases of AMV and, while the global mean temperature trends are similar, significant regional differences are found over the Arctic and northern extratropics. Specifically, the response to CO2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\text{CO}_2$$\end{document} forcing is hemispherically asymmetric, with western Eurasia warming 20–30% more, and North America and the extratropical North Pacific warming 20–30% less, in AMV(+)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\text{AMV}_{(+)}$$\end{document} than in AMV(-)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\text{AMV}_{(-)}$$\end{document}. This asymmetry is explained by the atmospheric response to differences in the initial concentration of sea ice in the Atlantic Arctic sector, and by a large-scale atmospheric teleconnection pattern originating in the tropical Indo-Pacific. A decomposition of the temperature trends reveals that the AMV influence occurs mostly through atmospheric dynamics; however, thermodynamic processes are important in regions of sea ice change, western Eurasia, and eastern North America. The difference in the responses to CO2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\text{CO}_2$$\end{document} and AER forcing between AMV phases reveals that some aspects of the AMV modulation of the response, such as a more positive (negative) temperature trend in AMV(+)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\text{AMV}_{(+)}$$\end{document} than in AMV(-)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\text{AMV}_{(-)}$$\end{document} in western Eurasia (the extratropical North Pacific), are largely independent of the sign, magnitude and spatial pattern of external forcing.
引用
收藏
页码:487 / 502
页数:15
相关论文
共 50 条
  • [1] The dependence of the northern extratropical climate response to external forcing on the phase of Atlantic Multidecadal Variability
    Hyatt, S. R.
    Fletcher, C. G.
    Cassou, C.
    Ruprich-Robert, Y.
    Terray, L.
    [J]. CLIMATE DYNAMICS, 2020, 55 (3-4) : 487 - 502
  • [2] External forcing as a metronome for Atlantic multidecadal variability
    Ottera, Odd Helge
    Bentsen, Mats
    Drange, Helge
    Suo, Lingling
    [J]. NATURE GEOSCIENCE, 2010, 3 (10) : 688 - 694
  • [3] External forcing as a metronome for Atlantic multidecadal variability
    Odd Helge Otterå
    Mats Bentsen
    Helge Drange
    Lingling Suo
    [J]. Nature Geoscience, 2010, 3 : 688 - 694
  • [4] Tropical Atlantic multidecadal variability is dominated by external forcing
    Chengfei He
    Amy C. Clement
    Sydney M. Kramer
    Mark A. Cane
    Jeremy M. Klavans
    Tyler M. Fenske
    Lisa N. Murphy
    [J]. Nature, 2023, 622 : 521 - 527
  • [5] Tropical Atlantic multidecadal variability is dominated by external forcing
    He, Chengfei
    Clement, Amy C.
    Kramer, Sydney M.
    Cane, Mark A.
    Klavans, Jeremy M.
    Fenske, Tyler M.
    Murphy, Lisa N.
    [J]. NATURE, 2023, 622 (7983) : 521 - +
  • [6] Atlantic Multidecadal Variability Response to External Forcing during the Past Two Millennia
    Dai, Zhangqi
    Wang, Bin
    Zhu, Ling
    Liu, Jian
    Sun, Weiyi
    Li, Longhui
    Lu, Guonian
    Ning, Liang
    Yan, Mi
    Chen, Kefan
    [J]. JOURNAL OF CLIMATE, 2022, 35 (24) : 4503 - 4515
  • [7] Internal and external forcing of multidecadal Atlantic climate variability over the past 1,200 years
    Wang, Jianglin
    Yang, Bao
    Ljungqvist, Fredrik Charpentier
    Luterbacher, Juerg
    Osborn, Timothy J.
    Briffa, Keith R.
    Zorita, Eduardo
    [J]. NATURE GEOSCIENCE, 2017, 10 (07) : 512 - +
  • [8] Internal and external forcing of multidecadal Atlantic climate variability over the past 1,200 years
    Wang J.
    Yang B.
    Ljungqvist F.C.
    Luterbacher J.
    Osborn T.J.
    Briffa K.R.
    Zorita E.
    [J]. Nature Geoscience, 2017, 10 (7) : 512 - 517
  • [9] Quantifying Contributions of Internal Variability and External Forcing to Atlantic Multidecadal Variability Since 1870
    Qin, Minhua
    Dai, Aiguo
    Hua, Wenjian
    [J]. GEOPHYSICAL RESEARCH LETTERS, 2020, 47 (22)
  • [10] Atlantic Multidecadal Oscillation and Northern Hemisphere’s climate variability
    Marcia Glaze Wyatt
    Sergey Kravtsov
    Anastasios A. Tsonis
    [J]. Climate Dynamics, 2012, 38 : 929 - 949