On the Poincaré problem for foliations of general type

被引:0
|
作者
Jorge Vitório Pereira
机构
[1] Instituto de Matemática Pura e Aplicada,
[2] IMPA,undefined
[3] Estrada Dona Castorina,undefined
[4] 110 Jardim Botânico,undefined
[5] 22460-320 Rio de Janeiro,undefined
[6] RJ,undefined
[7] Brasil (e-mail: jvp@impa.br) ,undefined
来源
Mathematische Annalen | 2002年 / 323卷
关键词
General Type; Algebraic Curf; Similar Bound; Holomorphic Foliation; Geometric Genus;
D O I
暂无
中图分类号
学科分类号
摘要
Let \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $\mathcal{F}$\end{document} be a holomorphic foliation of general type on \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $\mathbb{P}^2$\end{document} which admits a rational first integral. We provide bounds for the degree of the first integral of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $\mathcal{F}$\end{document} just in function of the degree and the birational invariants of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $\mathcal{F}$\end{document} and the geometric genus of a generic leaf. Similar bounds for invariant algebraic curves are also obtained and examples are given showing the necessity of the hypothesis.
引用
收藏
页码:217 / 226
页数:9
相关论文
共 50 条
  • [1] Poincaré problem for weighted projective foliations
    F. E. Brochero Martínez
    M. Corrêa
    A. M. Rodríguez
    Bulletin of the Brazilian Mathematical Society, New Series, 2017, 48 : 219 - 235
  • [2] Poincar, problem for weighted projective foliations
    Brochero Martinez, F. E.
    Correa, M.
    Rodriguez, A. M.
    BULLETIN OF THE BRAZILIAN MATHEMATICAL SOCIETY, 2017, 48 (02): : 219 - 235
  • [3] On the Poincare problem for foliations of general type
    Pereira, JV
    MATHEMATISCHE ANNALEN, 2002, 323 (02) : 217 - 226
  • [4] The Poincaré problem for foliations on compact toric orbifolds
    Miguel Rodríguez Peña
    Geometriae Dedicata, 2021, 215 : 333 - 353
  • [5] The Poincaré problem for hypersurfaces invariant by one-dimensional foliations
    Marcio G. Soares
    Inventiones mathematicae, 1997, 128 : 495 - 500
  • [6] A Poincaré type inequality for one-dimensional multiprojective foliations
    Maurício Corrêa
    Márcio G. Soares
    Bulletin of the Brazilian Mathematical Society, New Series, 2011, 42 : 485 - 503
  • [7] Generalized Poincaré-Dulac Singularities of Holomorphic Foliations
    Fernandez-Sanchez, Percy
    Mozo-Fernandez, Jorge
    BULLETIN OF THE IRANIAN MATHEMATICAL SOCIETY, 2024, 50 (06)
  • [8] Regularity of the Leafwise Poincaré Metric on Singular Holomorphic Foliations
    Sahil Gehlawat
    Kaushal Verma
    The Journal of Geometric Analysis, 2024, 34
  • [9] On a mixed Poincaré-Steklov type spectral problem in a Lipschitz domain
    M. S. Agranovich
    Russian Journal of Mathematical Physics, 2006, 13 : 239 - 244
  • [10] Toward classification of codimension 1 foliations on threefolds of general type
    Golota, Aleksei
    MATHEMATISCHE NACHRICHTEN, 2023, 296 (11) : 5012 - 5029