Infrared-active phonons in one-dimensional materials and their spectroscopic signatures

被引:0
|
作者
Norma Rivano
Nicola Marzari
Thibault Sohier
机构
[1] École Polytechnique Fédérale de Lausanne,Theory and Simulations of Materials (THEOS)
[2] École Polytechnique Fédérale de Lausanne,National Centre for Computational Design and Discovery of Novel Materials (MARVEL)
[3] Paul Scherrer Institut,Laboratory for Materials Simulations
[4] Université de Montpellier,Laboratoire Charles Coulomb (L2C)
[5] CNRS,undefined
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Dimensionality provides a clear fingerprint on the dispersion of infrared-active, polar-optical phonons. For these phonons, the local dipoles parametrized by the Born effective charges drive the LO-TO splitting of bulk materials; this splitting actually breaks down in two-dimensional materials. Here, we develop the theory for one-dimensional (1D) systems—nanowires, nanotubes, and atomic and polymeric chains. Combining an analytical model with the implementation of density-functional perturbation theory in 1D boundary conditions, we show that the dielectric splitting in the dispersion relations collapses as x2log(x)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${x}^{2}\log (x)$$\end{document} at the zone center. The dielectric properties and the radius of the 1D materials are linked by the present work to these red shifts, opening infrared and Raman characterization avenues.
引用
收藏
相关论文
共 50 条
  • [1] Infrared-active phonons in one-dimensional materials and their spectroscopic signatures
    Rivano, Norma
    Marzari, Nicola
    Sohier, Thibault
    [J]. NPJ COMPUTATIONAL MATERIALS, 2023, 9 (01)
  • [2] Infrared-active phonons in carbon nanotubes
    Bantignies, J. -L.
    Sauvajol, J. -L.
    Rahmani, A.
    Flahaut, E.
    [J]. PHYSICAL REVIEW B, 2006, 74 (19)
  • [3] Theory of infrared-active phonons in carbon nanotubes
    Jeon, GS
    Mahan, GD
    [J]. PHYSICAL REVIEW B, 2005, 72 (15)
  • [4] THz electromagnetic emission by coherent infrared-active phonons
    Dekorsy, T
    Auer, H
    Bakker, HJ
    Roskos, HG
    Kurz, H
    [J]. PHYSICAL REVIEW B, 1996, 53 (07): : 4005 - 4014
  • [5] INFRARED-ACTIVE PHONONS IN CUBIC ZINC-SULFIDE
    KLEIN, CA
    DONADIO, RN
    [J]. JOURNAL OF APPLIED PHYSICS, 1980, 51 (01) : 797 - 800
  • [6] Quenching of Infrared-Active Optical Phonons in Nanolayers of Crystalline Materials by Graphene Surface Plasmons
    Liu, Peter Q.
    Reno, John L.
    Brener, Igal
    [J]. ACS PHOTONICS, 2018, 5 (07): : 2706 - 2711
  • [7] INFRARED-ACTIVE PHONONS IN CR2O3
    LUCOVSKY, G
    SLADEK, RJ
    ALLEN, JW
    [J]. PHYSICAL REVIEW B, 1977, 16 (10): : 4716 - 4718
  • [8] Infrared-active optical phonons in LiFePO4 single crystals
    Stanislavchuk, T. N.
    Middlemiss, D. S.
    Syzdek, J. S.
    Janssen, Y.
    Basistyy, R.
    Sirenko, A. A.
    Khalifah, P. G.
    Grey, C. P.
    Kostecki, R.
    [J]. JOURNAL OF APPLIED PHYSICS, 2017, 122 (04)
  • [9] Raman- and infrared-active phonons in hexagonal BaMnO3
    Roy, C
    Budhani, RC
    [J]. PHYSICAL REVIEW B, 1998, 58 (13): : 8174 - 8177
  • [10] Infrared-active phonons of LaMnO3 and CaMnO3
    Fedorov, I
    Lorenzana, J
    Dore, P
    De Marzi, G
    Maselli, P
    Calvani, P
    Cheong, SW
    Koval, S
    Migoni, R
    [J]. PHYSICAL REVIEW B, 1999, 60 (17) : 11875 - 11878