New FPT Algorithms for Finding the Temporal Hybridization Number for Sets of Phylogenetic Trees

被引:0
|
作者
Sander Borst
Leo van Iersel
Mark Jones
Steven Kelk
机构
[1] Centrum Wiskunde & Informatica (CWI),Delft Institute of Applied Mathematics
[2] Delft University of Technology,Department of Data Science and Knowledge Engineering (DKE)
[3] Maastricht University,undefined
来源
Algorithmica | 2022年 / 84卷
关键词
Parameterized algorithms; Phylogenetic networks; Phylogenetic trees; Hybridization number;
D O I
暂无
中图分类号
学科分类号
摘要
We study the problem of finding a temporal hybridization network containing at most k reticulations, for an input consisting of a set of phylogenetic trees. First, we introduce an FPT algorithm for the problem on an arbitrary set of m binary trees with n leaves each with a running time of O(5k·n·m)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O(5^k\cdot n\cdot m)$$\end{document}. We also present the concept of temporal distance, which is a measure for how close a tree-child network is to being temporal. Then we introduce an algorithm for computing a tree-child network with temporal distance at most d and at most k reticulations in O((8k)d5k·k·n·m)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O((8k)^d5^ k\cdot k\cdot n\cdot m)$$\end{document} time. Lastly, we introduce an O(6kk!·k·n2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O(6^kk!\cdot k\cdot n^2)$$\end{document} time algorithm for computing a temporal hybridization network for a set of two nonbinary trees. We also provide an implementation of all algorithms and an experimental analysis on their performance.
引用
收藏
页码:2050 / 2087
页数:37
相关论文
共 13 条
  • [1] New FPT Algorithms for Finding the Temporal Hybridization Number for Sets of Phylogenetic Trees
    Borst, Sander
    van Iersel, Leo
    Jones, Mark
    Kelk, Steven
    ALGORITHMICA, 2022, 84 (07) : 2050 - 2087
  • [2] Efficient FPT Algorithms for (Strict) Compatibility of Unrooted Phylogenetic Trees
    Julien Baste
    Christophe Paul
    Ignasi Sau
    Celine Scornavacca
    Bulletin of Mathematical Biology, 2017, 79 : 920 - 938
  • [3] Efficient FPT Algorithms for (Strict) Compatibility of Unrooted Phylogenetic Trees
    Baste, Julien
    Paul, Christophe
    Sau, Ignasi
    Scornavacca, Celine
    ALGORITHMIC ASPECTS IN INFORMATION AND MANAGEMENT, 2016, 9778 : 53 - 64
  • [4] Efficient FPT Algorithms for (Strict) Compatibility of Unrooted Phylogenetic Trees
    Baste, Julien
    Paul, Christophe
    Sau, Ignasi
    Scornavacca, Celine
    BULLETIN OF MATHEMATICAL BIOLOGY, 2017, 79 (04) : 920 - 938
  • [5] Fast Computation of the Exact Hybridization Number of Two Phylogenetic Trees
    Wu, Yufeng
    Wang, Jiayin
    BIOINFORMATICS RESEARCH AND APPLICATIONS, PROCEEDINGS, 2010, 6053 : 203 - 214
  • [6] Computing the hybridization number of two phylogenetic trees is fixed-parameter tractable
    Bordewich, Magnus
    Semple, Charles
    IEEE-ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, 2007, 4 (03) : 458 - 466
  • [7] New algorithms for finding approximate frequent item sets
    Christian Borgelt
    Christian Braune
    Tobias Kötter
    Sonja Grün
    Soft Computing, 2012, 16 : 903 - 917
  • [8] New algorithms for finding approximate frequent item sets
    Borgelt, Christian
    Braune, Christian
    Koetter, Tobias
    Gruen, Sonja
    SOFT COMPUTING, 2012, 16 (05) : 903 - 917
  • [9] New FCM-based algorithms for finding the number of clusters
    Wang, S
    Sun, H
    Jiang, Q
    Krncta, M
    8TH INTERNATIONAL CONFERENCE ON NEURAL INFORMATION PROCESSING, VOLS 1-3, PROCEEDING, 2001, : 564 - 569
  • [10] OPTIMAL PARALLEL ALGORITHMS FOR COLORING BOUNDED DEGREE GRAPHS AND FINDING MAXIMAL INDEPENDENT SETS IN ROOTED TREES
    SAJITH, G
    SAXENA, S
    INFORMATION PROCESSING LETTERS, 1994, 49 (06) : 303 - 308