Two-parameter process limits for infinite-server queues with dependent service times via chaining bounds

被引:0
|
作者
Guodong Pang
Yuhang Zhou
机构
[1] Pennsylvania State University,The Harold and Inge Marcus Department of Industrial and Manufacturing Engineering
来源
Queueing Systems | 2018年 / 88卷
关键词
Infinite-server queue; Dependent service times; -Mixing; Two-parameter processes; Functional limit theorems; Maximal inequalities; The method of chaining; 60F05; 60F17; 60K25; 60G15;
D O I
暂无
中图分类号
学科分类号
摘要
We prove two-parameter process limits for infinite-server queues with weakly dependent service times satisfying the ρ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\rho $$\end{document}-mixing condition. The two-parameter processes keep track of the elapsed or residual service times of customers in the system. We use the new methodology developed in Pang and Zhou (Stoch Process Appl 127(5):1375–1416, 2017) to prove weak convergence of two-parameter stochastic processes. Specifically, we employ the maximal inequalities for two-parameter queueing processes resulting from the method of chaining. This new methodology requires a weaker mixing condition on the service times than the ϕ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\phi $$\end{document}-mixing condition in Pang and Whitt (Queueing Syst 73(2):119–146, 2013), as well as fewer regularity conditions on the service time distribution function.
引用
收藏
页码:1 / 25
页数:24
相关论文
共 12 条
  • [1] Two-parameter process limits for infinite-server queues with dependent service times via chaining bounds
    Pang, Guodong
    Zhou, Yuhang
    QUEUEING SYSTEMS, 2018, 88 (1-2) : 1 - 25
  • [2] Two-parameter heavy-traffic limits for infinite-server queues with dependent service times
    Guodong Pang
    Ward Whitt
    Queueing Systems, 2013, 73 : 119 - 146
  • [3] Two-parameter heavy-traffic limits for infinite-server queues with dependent service times
    Pang, Guodong
    Whitt, Ward
    QUEUEING SYSTEMS, 2013, 73 (02) : 119 - 146
  • [4] Two-parameter process limits for an infinite-server queue with arrival dependent service times
    Pang, Guodong
    Zhou, Yuhang
    STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2017, 127 (05) : 1375 - 1416
  • [5] Two-parameter heavy-traffic limits for infinite-server queues
    Pang, Guodong
    Whitt, Ward
    QUEUEING SYSTEMS, 2010, 65 (04) : 325 - 364
  • [6] Two-parameter heavy-traffic limits for infinite-server queues
    Guodong Pang
    Ward Whitt
    Queueing Systems, 2010, 65 : 325 - 364
  • [7] INFINITE-SERVER QUEUES WITH BATCH ARRIVALS AND DEPENDENT SERVICE TIMES
    Pang, Guodong
    Whitt, Ward
    PROBABILITY IN THE ENGINEERING AND INFORMATIONAL SCIENCES, 2012, 26 (02) : 197 - 220
  • [8] Markov-modulated infinite-server queues with general service times
    Blom, J.
    Kella, O.
    Mandjes, M.
    Thorsdottir, H.
    QUEUEING SYSTEMS, 2014, 76 (04) : 403 - 424
  • [9] Markov-modulated infinite-server queues with general service times
    J. Blom
    O. Kella
    M. Mandjes
    H. Thorsdottir
    Queueing Systems, 2014, 76 : 403 - 424
  • [10] INFINITE-SERVER QUEUES WITH BATCH ARRIVALS AND DEPENDENT SERVICE TIMES (vol 26, pg 197, 2012)
    Pang, Guodong
    Whitt, Ward
    PROBABILITY IN THE ENGINEERING AND INFORMATIONAL SCIENCES, 2012, 26 (03) : 455 - 455