Regular homeomorphisms of connected 3-manifolds

被引:0
|
作者
Khadija Ben Rejeb
机构
[1] Communication de Hammam Sousse,Institut Supérieur d’Informatique et des Technologies de
来源
Aequationes mathematicae | 2014年 / 88卷
关键词
Primary 37B05; 37C85; 57S05; 57S10; Secondary 54H20; 55M35; Regularly almost periodic homeomorphisms of connected manifolds; the Hilbert–Smith conjecture; compact abelian groups of homeomorphisms of ; topologically equivalent;
D O I
暂无
中图分类号
学科分类号
摘要
We establish some equivalent conditions to the Hilbert–Smith conjecture on connected n-manifolds M. For n = 3; we show that regularly almost periodic homeomorphisms of M are periodic; this result extends Theorem 5.34 of Gottschalk and Hedlund (Topological Dynamics. American Mathematical Society Colloquium Publications, American Mathematical Society, Providence, 1956). For the special case of M=R3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${M = \mathbb{R}^3}$$\end{document}, we extend the result of Brechner (Pac J Math 59(2):367–374, 1975) saying that “almost periodic homeomorphisms of the plane are periodic” to R3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{R}^3}$$\end{document}, and we show that any compact abelian group of homeomorphisms of R3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{R}^3}$$\end{document} is either finite or topologically equivalent to a subgroup of the orthogonal group O(3).
引用
收藏
页码:39 / 48
页数:9
相关论文
共 50 条