We establish some equivalent conditions to the Hilbert–Smith conjecture on connected n-manifolds M. For n = 3; we show that regularly almost periodic homeomorphisms of M are periodic; this result extends Theorem 5.34 of Gottschalk and Hedlund (Topological Dynamics. American Mathematical Society Colloquium Publications, American Mathematical Society, Providence, 1956). For the special case of M=R3\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${M = \mathbb{R}^3}$$\end{document}, we extend the result of Brechner (Pac J Math 59(2):367–374, 1975) saying that “almost periodic homeomorphisms of the plane are periodic” to R3\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\mathbb{R}^3}$$\end{document}, and we show that any compact abelian group of homeomorphisms of R3\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\mathbb{R}^3}$$\end{document} is either finite or topologically equivalent to a subgroup of the orthogonal group O(3).