Rings of invariants for three dimensional modular representations

被引:0
|
作者
Jürgen Herzog
Vijaylaxmi Trivedi
机构
[1] Universität Duisburg-Essen,Fakultät für Mathematik
[2] Tata Institute of Fundamental Research,School of Mathematics
来源
Mathematische Zeitschrift | 2023年 / 305卷
关键词
Ring of invariants; SAGBI basis; Modular representations;
D O I
暂无
中图分类号
学科分类号
摘要
Let p>3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p>3$$\end{document} be a prime number. We compute the rings of invariants of the elementary abelian p-group (Z/pZ)r\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$({{\mathbb {Z}}}/p{{\mathbb {Z}}})^r$$\end{document} for 3-dimensional generic representations. Furthermore we show that these rings of invariants are complete intersection rings with embedding dimension ⌈r/2⌉+3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lceil r/2\rceil +3$$\end{document}. This proves a conjecture of Campbell, Shank and Wehlau in [CSW], which they proved for r=3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$r=3$$\end{document}, and was later proved for r=4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$r=4$$\end{document} by Pierron and Shank.
引用
收藏
相关论文
共 50 条