Fast Voltage Dynamics of Voltage–Conductance Models for Neural Networks

被引:0
|
作者
Jeongho Kim
Benoît Perthame
Delphine Salort
机构
[1] Seoul National University,Department of Mathematical Sciences
[2] Sorbonne Université,undefined
[3] CNRS,undefined
[4] Université de Paris,undefined
[5] Inria,undefined
[6] Laboratoire Jacques-Louis Lions,undefined
[7] Sorbonne Université,undefined
[8] CNRS,undefined
[9] Laboratoire de Biologie Computationnelle et Quantitative,undefined
[10] UMR 7238,undefined
关键词
Voltage–conductance model; Integrate-and-Fire; Asymptotic behavior; Neuron assemblies; 35Q92; 35Q84; 92B20;
D O I
暂无
中图分类号
学科分类号
摘要
We present the conductance limit of the voltage–conductance model with random firing voltage when conductance dynamics are slower than the voltage dynamics. The result of the limiting procedure is a transport/Fokker–Planck equation for conductance variable with a non-linear drift which depends on the total firing rate. We analyze the asymptotic behavior of the limit equation under two possible rescalings which relate the voltage scale, the conductance scale and the firing rate. We provide the sufficient framework in which the limiting procedure can be rigorously justified. Moreover, we also suggest a sufficient condition on the parameters and firing distribution in the limiting conductance equation under which we are able to obtain a unique stationary state and its asymptotic stability. Finally, we provide several numerical illustrations supporting the analytic results.
引用
收藏
页码:101 / 134
页数:33
相关论文
共 50 条
  • [1] Fast Voltage Dynamics of Voltage-Conductance Models for Neural Networks
    Kim, Jeongho
    Perthame, Benoit
    Salort, Delphine
    [J]. BULLETIN OF THE BRAZILIAN MATHEMATICAL SOCIETY, 2021, 52 (01): : 101 - 134
  • [2] ON A VOLTAGE-CONDUCTANCE KINETIC SYSTEM FOR INTEGRATE & FIRE NEURAL NETWORKS
    Perthame, Benoit
    Salort, Delphine
    [J]. KINETIC AND RELATED MODELS, 2013, 6 (04) : 841 - 864
  • [3] Use of artificial neural networks for estimation of the voltage drops in low voltage networks
    Bielecki, Slawomir
    Parol, Miroslaw
    [J]. PRZEGLAD ELEKTROTECHNICZNY, 2007, 83 (12): : 41 - 45
  • [4] Fast estimation of voltage and current phasors in power networks using an adaptive neural network
    Dash, PK
    Panda, SK
    Mishra, B
    Swain, DP
    [J]. IEEE TRANSACTIONS ON POWER SYSTEMS, 1997, 12 (04) : 1494 - 1499
  • [5] Application of Neural Networks to Voltage Fluctuations Measurement - Neural Networks Flickermeter
    Szlosek, Marcin
    [J]. PRZEGLAD ELEKTROTECHNICZNY, 2008, 84 (11): : 299 - 302
  • [6] Application of Neural Networks to Voltage Fluctuations Measurement - Neural Networks Flickermeter
    Szlosek, Marcin
    Swiatek, Boguslaw
    Hanzelka, Zbigniew
    [J]. 2008 INTERNATIONAL SCHOOL ON NONSINUSOIDAL CURRENTS AND COMPENSATION, 2008, : 215 - 219
  • [7] Neural voltage and current dependency on fault impedance value in medium voltage networks
    Frankovic, D.
    Marusic, A.
    [J]. Annals of DAAAM for 2005 & Proceedings of the 16th International DAAAM Symposium: INTELLIGENT MANUFACTURING & AUTOMATION: FOCUS ON YOUNG RESEARCHES AND SCIENTISTS, 2005, : 125 - 126
  • [8] Battery Voltage Prediction Using Neural Networks
    Zhu, Di
    Campbell, Jeffrey Joseph
    Cho, Gyouho
    [J]. 2021 IEEE TRANSPORTATION ELECTRIFICATION CONFERENCE & EXPO (ITEC), 2021, : 807 - 812
  • [9] THRESHOLD VOLTAGE MODELING USING NEURAL NETWORKS
    Kahraman, Nihan
    Erkmen, Burcu
    Yildirim, Tuelay
    [J]. NEURAL NETWORK WORLD, 2009, 19 (03) : 255 - 262
  • [10] Models of the dynamics of neural networks
    Shubnikov, EI
    [J]. JOURNAL OF OPTICAL TECHNOLOGY, 1999, 66 (04) : 346 - 359