A Composite Likelihood Inference in Latent Variable Models for Ordinal Longitudinal Responses

被引:0
|
作者
Vassilis G. S. Vasdekis
Silvia Cagnone
Irini Moustaki
机构
[1] Athens University of Economics and Business,Department of Statistics
[2] University of Bologna,Department of Statistics
[3] London School of Economics and Political Science,Department of Statistics
来源
Psychometrika | 2012年 / 77卷
关键词
composite likelihood; longitudinal; ordinal data; latent variables; goodness-of-fit measures;
D O I
暂无
中图分类号
学科分类号
摘要
The paper proposes a composite likelihood estimation approach that uses bivariate instead of multivariate marginal probabilities for ordinal longitudinal responses using a latent variable model. The model considers time-dependent latent variables and item-specific random effects to be accountable for the interdependencies of the multivariate ordinal items. Time-dependent latent variables are linked with an autoregressive model. Simulation results have shown composite likelihood estimators to have a small amount of bias and mean square error and as such they are feasible alternatives to full maximum likelihood. Model selection criteria developed for composite likelihood estimation are used in the applications. Furthermore, lower-order residuals are used as measures-of-fit for the selected models.
引用
收藏
页码:425 / 441
页数:16
相关论文
共 50 条
  • [1] A Composite Likelihood Inference in Latent Variable Models for Ordinal Longitudinal Responses
    Vasdekis, Vassilis G. S.
    Cagnone, Silvia
    Moustaki, Irini
    [J]. PSYCHOMETRIKA, 2012, 77 (03) : 425 - 441
  • [2] Latent variable models for multivariate longitudinal ordinal responses
    Cagnone, Silvia
    Moustaki, Irini
    Vasdekis, Vassilis
    [J]. BRITISH JOURNAL OF MATHEMATICAL & STATISTICAL PSYCHOLOGY, 2009, 62 : 401 - 415
  • [3] Latent-variable models for longitudinal data with bivariate ordinal outcomes
    Todem, David
    Kim, KyungMann
    Lesaffre, Emmanuel
    [J]. STATISTICS IN MEDICINE, 2007, 26 (05) : 1034 - 1054
  • [4] A Bayes Inference for Ordinal Response with Latent Variable Approach
    Sha, Naijun
    Dechi, Benard Owusu
    [J]. STATS, 2019, 2 (02): : 321 - 331
  • [5] LATENT VARIABLE MODELS FOR CLUSTERED ORDINAL DATA
    QU, YS
    PIEDMONTE, MR
    MEDENDORP, SV
    [J]. BIOMETRICS, 1995, 51 (01) : 268 - 275
  • [6] Latent variable models with ordinal categorical covariates
    Poon, Wai-Yin
    Wang, Hai-Bin
    [J]. STATISTICS AND COMPUTING, 2012, 22 (05) : 1135 - 1154
  • [7] Latent variable models with ordinal categorical covariates
    Wai-Yin Poon
    Hai-Bin Wang
    [J]. Statistics and Computing, 2012, 22 : 1135 - 1154
  • [8] A latent variable model for analyzing mixed longitudinal (k,l)-inflated count and ordinal responses
    Razie, F.
    Samani, E. Bahrami
    Ganjali, M.
    [J]. JOURNAL OF APPLIED STATISTICS, 2016, 43 (12) : 2203 - 2224
  • [9] U-likelihood and U-updating algorithms:: Statistical inference in latent variable models
    Sung, J
    Bang, SY
    Choi, S
    Ghahramani, Z
    [J]. MACHINE LEARNING: ECML 2005, PROCEEDINGS, 2005, 3720 : 377 - 388
  • [10] Composite likelihood inference for ordinal periodontal data with replicated spatial patterns
    Wang, Pingping
    Ma, Ting Fung
    Bandyopadhyay, Dipankar
    Tang, Yincai
    Zhu, Jun
    [J]. STATISTICS IN MEDICINE, 2021, 40 (26) : 5871 - 5893