Stationary Solutions to the Stochastic Burgers Equation on the Line

被引:0
|
作者
Alexander Dunlap
Cole Graham
Lenya Ryzhik
机构
[1] Stanford University,Department of Mathematics
[2] New York University,Courant Institute of Mathematical Sciences
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
We consider invariant measures for the stochastic Burgers equation on R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {R}}$$\end{document}, forced by the derivative of a spacetime-homogeneous Gaussian noise that is white in time and smooth in space. An invariant measure is indecomposable, or extremal, if it cannot be represented as a convex combination of other invariant measures. We show that for each a∈R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$a\in {\mathbb {R}}$$\end{document}, there is a unique indecomposable law of a spacetime-stationary solution with mean a, in a suitable function space. We also show that solutions starting from spatially-decaying perturbations of mean-a periodic functions converge in law to the extremal space-time stationary solution with mean a as time goes to infinity.
引用
收藏
页码:875 / 949
页数:74
相关论文
共 50 条
  • [1] Stationary Solutions to the Stochastic Burgers Equation on the Line
    Dunlap, Alexander
    Graham, Cole
    Ryzhik, Lenya
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2021, 382 (02) : 875 - 949
  • [2] On the stochastic Burgers' equation in the real line
    Gyöngy, I
    Nualart, D
    [J]. ANNALS OF PROBABILITY, 1999, 27 (02): : 782 - 802
  • [3] On Energy Solutions to Stochastic Burgers Equation
    Goncalves, Patricia
    Occelli, Alessandra
    [J]. MARKOV PROCESSES AND RELATED FIELDS, 2021, 27 (04) : 523 - 556
  • [4] A VARIATIONAL APPROACH TO THE STATIONARY SOLUTIONS OF THE BURGERS EQUATION
    Bertini, Lorenzo
    Ponsiglione, Marcello
    [J]. SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2012, 44 (02) : 682 - 698
  • [5] Stationary solutions for a boundary controlled Burgers' equation
    Balogh, A
    Gilliam, DS
    Shubov, VI
    [J]. MATHEMATICAL AND COMPUTER MODELLING, 2001, 33 (1-3) : 21 - 37
  • [6] REPRESENTATION OF PATHWISE STATIONARY SOLUTIONS OF STOCHASTIC BURGERS' EQUATIONS
    Liu, Yong
    Zhao, Huaizhong
    [J]. STOCHASTICS AND DYNAMICS, 2009, 9 (04) : 613 - 634
  • [7] Generalized solutions of the multidimensional stochastic Burgers equation
    Catuogno, P.
    Colombeau, J. F.
    Olivera, C.
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2018, 464 (02) : 1375 - 1382
  • [8] Viscous Shock Solutions to the Stochastic Burgers Equation
    Dunlap, Alexander
    Ryzhik, Lenya
    [J]. ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2021, 242 (02) : 937 - 971
  • [9] Viscous Shock Solutions to the Stochastic Burgers Equation
    Alexander Dunlap
    Lenya Ryzhik
    [J]. Archive for Rational Mechanics and Analysis, 2021, 242 : 937 - 971
  • [10] Zero Temperature Limit for Directed Polymers and Inviscid Limit for Stationary Solutions of Stochastic Burgers Equation
    Bakhtin, Yuri
    Li, Liying
    [J]. JOURNAL OF STATISTICAL PHYSICS, 2018, 172 (05) : 1358 - 1397