Schauder Estimates for Poisson Equations Associated with Non-local Feller Generators

被引:0
|
作者
Franziska Kühn
机构
[1] TU Dresden,Fachrichtung Mathematik, Institut für Mathematische Stochastik
来源
关键词
Feller process; Infinitesimal generator; Regularity; Hölder space of variable order; Favard space; Primary 60J25; Secondary 45K05; 35B65; 60J35; 60J75;
D O I
暂无
中图分类号
学科分类号
摘要
We show how Hölder estimates for Feller semigroups can be used to obtain regularity results for solutions to the Poisson equation Af=g\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Af=g$$\end{document} associated with the (extended) infinitesimal generator of a Feller process. The regularity of f is described in terms of Hölder–Zygmund spaces of variable order and, moreover, we establish Schauder estimates. Since Hölder estimates for Feller semigroups have been intensively studied in the last years, our results apply to a wide class of Feller processes, e.g. random time changes of Lévy processes and solutions to Lévy-driven stochastic differential equations. Most prominently, we establish Schauder estimates for the Poisson equation associated with the fractional Laplacian of variable order. As a by-product, we obtain new regularity estimates for semigroups associated with stable-like processes.
引用
收藏
页码:1506 / 1578
页数:72
相关论文
共 50 条