Improved key integrity checking for high-speed quantum key distribution using combinatorial group testing with strongly selective family design

被引:0
|
作者
Junbin Fang
Zoe L. Jiang
Kexin Ren
Yunhan Luo
Zhe Chen
Weiping Liu
Xuan Wang
Xiamu Niu
S. M. Yiu
Lucas C. K. Hui
机构
[1] Jinan University,Key Laboratory of Optoelectronic Information and Sensing Technologies of Guangdong Higher Education Institutes
[2] Jinan University,Department of Optoelectronic Engineering
[3] Harbin Institute of Technology,Shenzhen Graduate School
[4] The University of Hong Kong,Department of Computer Science
来源
关键词
High-speed quantum key distribution; Key integrity checking; Combinatorial group testing; Strong selective family;
D O I
暂无
中图分类号
学科分类号
摘要
Key integrity checking is a necessary process in practical quantum key distribution (QKD) to check whether there is any error bit escaped from the previous error correction procedure. The traditional single-hash method may become a bottleneck in high-speed QKD since it has to discard all the key bits even if just one error bit exists. In this paper, we propose an improved scheme using combinatorial group testing (CGT) based on strong selective family design to verify key integrity in fine granularity and consequently improve the total efficiency of key generation after the error correction procedure. Code shortening technique and parallel computing are also applied to enhance the scheme’s flexibility and to accelerate the computation. Experimental results show that the scheme can identify the rare error bits precisely and thus avoid dropping the great majority of correct bits, while the overhead is reasonable. For a 220\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2^{20}$$\end{document}-bit key, the disclosed information for public comparison is 800 bits (about 0.076 % of the key bits), reducing 256 bits when compared with the previous CGT scheme. Besides, with an Intel® quad-cores CPU at 3.40 GHz and 8 GB RAM, the computational times are 3.0 and 6.3 ms for hashing and decoding, respectively, which are reasonable in real applications and will not cause significant latency in practical QKD systems.
引用
收藏
页码:1425 / 1435
页数:10
相关论文
共 50 条
  • [1] Improved key integrity checking for high-speed quantum key distribution using combinatorial group testing with strongly selective family design
    Fang, Junbin
    Jiang, Zoe L.
    Ren, Kexin
    Luo, Yunhan
    Chen, Zhe
    Liu, Weiping
    Wang, Xuan
    Niu, Xiamu
    Yiu, S. M.
    Hui, Lucas C. K.
    [J]. QUANTUM INFORMATION PROCESSING, 2014, 13 (06) : 1425 - 1435
  • [2] Checking key integrity efficiently for high-speed quantum key distribution using combinatorial group testing
    Fang, Junbin
    Jiang, Zoe Lin
    Yiu, S. M.
    Hui, Lucas C. K.
    [J]. OPTICS COMMUNICATIONS, 2011, 284 (01) : 531 - 535
  • [3] Efficient Key Integrity Verification for Quantum Cryptography Using Combinatorial Group Testing
    Fang, Junbin
    Jiang, Zoe L.
    Yiu, S. M.
    Hui, Lucas C. K.
    Li, Zichen
    [J]. QUANTUM INFORMATION AND COMPUTATION VIII, 2010, 7702
  • [4] High-Speed Quantum Key Distribution and Beyond
    Stierle, Martin
    Pacher, Christoph
    [J]. ERCIM NEWS, 2011, (85): : 18 - 19
  • [5] A high-speed key management method for quantum key distribution network
    Takahashi, Ririka
    Tanizawa, Yoshimichi
    Dixon, Alexander
    [J]. 2019 ELEVENTH INTERNATIONAL CONFERENCE ON UBIQUITOUS AND FUTURE NETWORKS (ICUFN 2019), 2019, : 437 - 442
  • [6] High-Speed Privacy Amplification Scheme Using GMP in Quantum Key Distribution
    Yan, Bingze
    Mao, Haokun
    Xue, Xiaofeng
    Li, Qiong
    [J]. IEEE PHOTONICS JOURNAL, 2020, 12 (03):
  • [7] High-Speed Quantum Key Distribution Using Hyper-Entangled Photons
    Christensen, Bradley G.
    McCusker, Kevin T.
    Gauthier, Daniel J.
    Kwiat, Paul G.
    [J]. 2012 CONFERENCE ON LASERS AND ELECTRO-OPTICS (CLEO), 2012,
  • [8] Integrated silicon photonics for high-speed quantum key distribution
    Sibson, Philip
    Kennard, Jake E.
    Stanisic, Stasja
    Erven, Chris
    O'Brien, Jeremy L.
    Thompson, Mark G.
    [J]. OPTICA, 2017, 4 (02): : 172 - 177
  • [9] High-speed robust polarization modulation for quantum key distribution
    Li, Yang
    Li, Yu-Huai
    Xie, Hong-Bo
    Li, Zheng-Ping
    Jiang, Xiao
    Cai, Wen-Qi
    Ren, Ji-Gang
    Yin, Juan
    Liao, Sheng-Kai
    Peng, Cheng-Zhi
    [J]. OPTICS LETTERS, 2019, 44 (21) : 5262 - 5265
  • [10] Integrated Silicon Photonics for High-Speed Quantum Key Distribution
    Kennard, J. E.
    Sibson, P.
    Stanisic, S.
    Erven, C.
    O'Brien, J. L.
    Thompson, M. G.
    [J]. 2017 CONFERENCE ON LASERS AND ELECTRO-OPTICS (CLEO), 2017,