Global strong solution to the 2D inhomogeneous incompressible magnetohydrodynamic fluids with density-dependent viscosity and vacuum

被引:0
|
作者
Menglong Su
机构
[1] Luoyang Normal University,School of Mathematical Sciences
关键词
35D35; 76D03;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we investigate an initial boundary value problem for two-dimensional inhomogeneous incompressible MHD system with density-dependent viscosity. First, we establish a blow-up criterion for strong solutions with vacuum. Precisely, the strong solution exists globally if ∥∇μ(ρ)∥L∞(0,T;Lp)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\|\nabla \mu (\rho )\|_{L^{\infty }(0, T; L^{p})}$\end{document} is bounded. Second, we prove the strong solution exists globally (in time) only if ∥∇μ(ρ0)∥Lp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\|\nabla \mu (\rho _{0})\|_{L^{p}}$\end{document} is suitably small, even the presence of vacuum is permitted.
引用
收藏
相关论文
共 50 条