On an Equichordal Property of a Pair of Convex Bodies

被引:0
|
作者
Dmitry Ryabogin
机构
[1] Kent State University,Department of Mathematics
来源
关键词
Convex and floating bodies; Equichordal property; Ulam’s problems; 52A20; 52A38;
D O I
暂无
中图分类号
学科分类号
摘要
Let d≥2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d\ge 2$$\end{document} and let K and L be two convex bodies in Rd\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathbb {R}}^d}$$\end{document} such that L⊂intK\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L\subset {\text {int}}K$$\end{document} and the boundary of L does not contain a segment. If K and L satisfy the (d+1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(d+1)$$\end{document}-equichordal property, i.e., for any line l supporting the boundary of L and the points {ζ±}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\{\zeta _{\pm }\}$$\end{document} of the intersection of the boundary of K with l, distd+1(L∩l,ζ+)+distd+1(L∩l,ζ-)=2σd+1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} {\text {dist}}^{d+1}(L\cap l, \zeta _+)+{\text {dist}}^{d+1}(L\cap l, \zeta _-)=2\sigma ^{d+1} \end{aligned}$$\end{document}holds, where the constant σ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sigma $$\end{document} is independent of l, does it follow that K and L are concentric Euclidean balls? We prove that if K and L have C2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C^2$$\end{document}-smooth boundaries and L is a body of revolution, then K and L are concentric Euclidean balls.
引用
收藏
页码:881 / 901
页数:20
相关论文
共 50 条
  • [1] On an Equichordal Property of a Pair of Convex Bodies
    Ryabogin, Dmitry
    [J]. DISCRETE & COMPUTATIONAL GEOMETRY, 2022, 68 (03) : 881 - 901
  • [2] Some Results About Equichordal Convex Bodies
    Jeronimo-Castro, Jesus
    Jimenez-Lopez, Francisco G.
    Morales-Amaya, Efren
    [J]. DISCRETE & COMPUTATIONAL GEOMETRY, 2023, 70 (04) : 1741 - 1750
  • [3] Some Results About Equichordal Convex Bodies
    Jesús Jerónimo-Castro
    Francisco G. Jimenez-Lopez
    Efrén Morales-Amaya
    [J]. Discrete & Computational Geometry, 2023, 70 : 1741 - 1750
  • [4] A PROPERTY OF PLANAR CONVEX BODIES
    CEDER, JG
    [J]. ISRAEL JOURNAL OF MATHEMATICS, 1963, 1 (04) : 248 - &
  • [5] CONVEX BODIES WITH A COVERING PROPERTY
    BAMBAH, RP
    WOODS, AC
    [J]. JOURNAL OF THE LONDON MATHEMATICAL SOCIETY, 1968, 43 (169P): : 53 - &
  • [6] PROPERTY OF INDICATORS OF SMOOTH CONVEX BODIES
    BERENSTEIN, CA
    DOSTAL, MA
    [J]. MICHIGAN MATHEMATICAL JOURNAL, 1976, 22 (03) : 237 - 246
  • [7] On the central limit property of convex bodies
    Bobkov, SG
    Koldobsky, A
    [J]. GEOMETRIC ASPECTS OF FUNCTIONAL ANALYSIS, 2003, 1807 : 44 - 52
  • [8] A PROPERTY OF PROJECTION FUNCTIONS OF PARALLEL CONVEX BODIES
    SHEPHARD, GC
    [J]. JOURNAL OF THE LONDON MATHEMATICAL SOCIETY, 1966, 41 (162P): : 343 - &
  • [9] A property of convex bodies in a space with n dimensions
    Vincensini, P
    [J]. COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES, 1937, 204 : 1302 - 1304
  • [10] John's Theorem for an Arbitrary Pair of Convex Bodies
    A. Giannopoulos
    I. Perissinaki
    A. Tsolomitis
    [J]. Geometriae Dedicata, 2001, 84 : 63 - 79