Three Topological Results on the Twistor Discriminant Locus in the 4-Sphere

被引:0
|
作者
Amedeo Altavilla
Edoardo Ballico
机构
[1] Università Politecnica delle Marche,Dipartimento di Ingegneria Industriale e Scienze Matematiche
[2] Università di Trento,Dipartimento Di Matematica
来源
关键词
Twistor fibration; dimension algebraic varieties; stability; discriminant locus of cones; Primary 14D21; 53C28; secondary 14J26; 14P25; 32L25;
D O I
暂无
中图分类号
学科分类号
摘要
We exploit techniques from classical (real and complex) algebraic geometry for the study of the standard twistor fibration π:CP3→S4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\pi : \mathbb{CP}^3 \rightarrow S^4}$$\end{document}. We prove three results about the topology of the twistor discriminant locus of an algebraic surface in CP3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{CP}^3}$$\end{document}. First of all we prove that, with the exception of two special cases, the real dimension of the twistor discriminant locus of an algebraic surface is always equal to 2. Secondly we describe the possible intersections of a general surface with the family of twistor lines: we find that only 4 configurations are possible and for each of them we compute the dimension. Lastly we give a decomposition of the twistor discriminant locus of a given cone in terms of its singular locus and its dual variety.
引用
收藏
页码:57 / 72
页数:15
相关论文
共 50 条