Twistor fibration;
dimension algebraic varieties;
stability;
discriminant locus of cones;
Primary 14D21;
53C28;
secondary 14J26;
14P25;
32L25;
D O I:
暂无
中图分类号:
学科分类号:
摘要:
We exploit techniques from classical (real and complex) algebraic geometry for the study of the standard twistor fibration π:CP3→S4\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\pi :
\mathbb{CP}^3 \rightarrow S^4}$$\end{document}. We prove three results about the topology of the twistor discriminant locus of an algebraic surface in CP3\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\mathbb{CP}^3}$$\end{document}. First of all we prove that, with the exception of two special cases, the real dimension of the twistor discriminant locus of an algebraic surface is always equal to 2. Secondly we describe the possible intersections of a general surface with the family of twistor lines: we find that only 4 configurations are possible and for each of them we compute the dimension. Lastly we give a decomposition of the twistor discriminant locus of a given cone in terms of its singular locus and its dual variety.
机构:
Univ Politecn Marche, Dipartimento Ingn Ind & Sci Matemat, Via Brecce Bianche, I-60131 Ancona, ItalyUniv Politecn Marche, Dipartimento Ingn Ind & Sci Matemat, Via Brecce Bianche, I-60131 Ancona, Italy
Altavilla, Amedeo
Ballico, Edoardo
论文数: 0引用数: 0
h-index: 0
机构:
Univ Trento, Dipartimento Matemat, Via Sommar 14, I-38123 Povo, Trento, ItalyUniv Politecn Marche, Dipartimento Ingn Ind & Sci Matemat, Via Brecce Bianche, I-60131 Ancona, Italy