Co-seismic deformation and related hazards associated with the 2022 Mw 5.6 Cianjur earthquake in West Java']Java, Indonesia: insights from combined seismological analysis, DInSAR, and geomorphological investigations

被引:0
|
作者
Hadmoko, Danang Sri [1 ]
Wibowo, Sandy Budi [2 ]
Sianipar, Dimas Salomo J. [3 ]
Daryono, Daryono [4 ]
Fathoni, Mohammad Naufal [1 ]
Pratiwi, Rohanita Setia [1 ]
Haryono, Eko [1 ]
Lavigne, Franck [5 ]
机构
[1] Univ Gadjah Mada, Fac Geog, Lab Environm Geomorphol & Disaster Mitigat, Yogyakarta, Indonesia
[2] Univ Gadjah Mada, Fac Geog, Dept Geog Informat Sci, Sekip Utara Bulaksumur 55281, Yogyakarta, Indonesia
[3] State Coll Meteorol Climatol & Geophys STMKG, Tangerang Selatan, Indonesia
[4] Agcy Meteorol Climatol & Geophys, Jakarta, Indonesia
[5] Univ Paris 1 Pantheon Sorbonne, Lab Geog Phys, Paris, France
关键词
Cianjur earthquake; Seismological analysis; Ground deformation; DInSAR and geomorphological investigation; Co-seismic hazard; GROUND DEFORMATION; RADAR INTERFEROGRAM; SURFACE DEFORMATION; STRESS CHANGES; ALGORITHM; JAPAN;
D O I
10.1186/s40677-024-00277-6
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Introduction On November 21, 2022, a magnitude Mw 5.6 earthquake struck Cianjur Regency in the West Java Province of Indonesia. It was followed by at least 512 aftershocks that persisted from November to June 2023. This seismic event occurred in an area previously unrecognized as an active fault zone. The consequences of this earthquake in Cianjur were severe, leading to both loss of life and extensive structural damage. The substantial damage to buildings was likely a result of abrupt alterations in the local topography due to surface deformation effects.Objectives This research endeavor aims to spatially determine the patterns of ground surface deformation and its relationship with local geomorphological setting due to earthquakes in Cianjur in 2022.Methods In this study we conduct seismological analysis of 45 seismic stations, statistical analysis of mainshock and aftershocks data, RADAR Sentinel-1 imagery and employed the DInSAR methodology. Field survey was also conducted to determine the geomorphological characteristics in the study area.Results The outcomes disclosed that the deformation encompassed both subsidence and uplift. The results signify that there was subsidence deformation in the vicinity of Cianjur and its environs during the primary earthquake on November 21, 2022, with an average deformation value of approximately -5 cm. In contrast, the measured deformation during the aftershocks exhibited uplift deformation, with an average value of 10 cm. The examination of deformation patterns amid the 2022 Cianjur earthquake sequence detects elevated deformation values in the vicinity of Cugenang district, with an orientation running from northwest to southeast. The geomorphological investigation conducted indicates that the region of Cianjur encompasses a variety of landforms, such as volcanic, structural, fluvial, and denudational. These landforms exhibit distinct responses to seismic activities. Co-seismic hazards, such as landslides frequently occur as a consequence of seismic events in mountainous terrain.Main Conclusions Spatio-temporal variation of ground deformation could arise from various causes, such as the number and distribution of aftershocks, stress redistribution, fault interactions, secondary effects, and local geological settings. The mainshocks release accumulated stress along a fault, resulting in particular types of deformation, whereas aftershocks may redistribute stress exhibiting on adjacent faults. Secondary effects triggered by aftershocks, coupled with local geological and geomorphological conditions, further contribute to the diverse patterns of ground deformation observed during seismic events. The results of the study revealed that ground deformation had the greatest impact on fluvial, volcanic, and denudational processes, resulting in notable subsidence and uplift in specific regions. The occurrence and magnitude of co-seismic landslides were triggered by both mainshock and aftershock events, which occurred on weathered geological materials. These effects were further amplified by the simultaneous presence of the rainy season.Implications The knowledge gained from this research can be applied to evaluate the impacts of earthquakes and to proactively reduce future risks.
引用
收藏
页数:20
相关论文
共 4 条
  • [1] A conjugate fault revealed by the destructive Mw 5.6 (November 21, 2022) Cianjur earthquake, West Java']Java, Indonesia
    Supendi, Pepen
    Winder, Tom
    Rawlinson, Nicholas
    Bacon, Conor Andrew
    Palgunadi, Kadek Hendrawan
    Simanjuntak, Andrean
    Kurniawan, Andri
    Widiyantoro, Sri
    Nugraha, Andri Dian
    Shiddiqi, Hasbi Ash
    Ardianto, Dwikorita
    Daryono
    Adi, Suko Prayitno
    Karnawati, Dwikorita
    Priyobudi
    Marliyani, Gayatri Indah
    Imranj, Iswandi
    Jatnika, Jajat
    [J]. JOURNAL OF ASIAN EARTH SCIENCES, 2023, 257
  • [2] Seismic source analysis of the destructive earthquake November 21, 2022, Mw 5.6 Cianjur (Indonesia) from relocated aftershock
    Zulfakriza, Zulfakriza
    Nugraha, Andri Dian
    Heryandoko, Nova
    Ry, Rexha Verdhora
    Muttaqy, Faiz
    Andika, Ade
    Azhari, Muhammad Fikri
    Putra, Ade Surya
    Palgunadi, Kadek Hendrawan
    Cummins, Phil R.
    Supendi, Pepen
    Lesmana, Aditya
    Sahara, David P.
    Puspito, Nanang T.
    [J]. SCIENTIFIC REPORTS, 2024, 14 (01):
  • [3] Co-seismic and post-seismic deformation associated with the 2018 Lombok, Indonesia, earthquake sequence, inferred from InSAR and seismic data analysis
    Zhao, Siyuan
    Mcclusky, Simon
    Cummins, Phil R.
    Miller, Meghan S.
    [J]. REMOTE SENSING OF ENVIRONMENT, 2024, 304
  • [4] Comment on " InSAR derived co-seismic deformation triggered by the Mihoub (Tell Atlas of Algeria) 28 May 2016 (Mw=5.4) earthquake combined to geomorphic features analysis to identify the causative active fault " by Serkhane et al. (2022). J. Afr. Earth Sci., volume 188, (2022) 104, 476
    Semmane, F.
    Miloudi, S.
    Khelif, M. F.
    [J]. JOURNAL OF AFRICAN EARTH SCIENCES, 2022, 196