Effect of magnetic field on the charge and thermal transport properties of hot and dense QCD matter

被引:0
|
作者
Shubhalaxmi Rath
Binoy Krishna Patra
机构
[1] Indian Institute of Technology Roorkee,Department of Physics
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
We have studied the effect of strong magnetic field on the charge and thermal transport properties of hot QCD matter at finite chemical potential. For this purpose, we have calculated the electrical conductivity (σel\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sigma _\mathrm{el}$$\end{document}) and the thermal conductivity (κ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\kappa $$\end{document}) using kinetic theory in the relaxation time approximation, where the interactions are subsumed through the distribution functions within the quasiparticle model at finite temperature, strong magnetic field and finite chemical potential. This study helps to understand the impacts of strong magnetic field and chemical potential on the local equilibrium by the Knudsen number (Ω\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Omega $$\end{document}) through κ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\kappa $$\end{document} and on the relative behavior between thermal conductivity and electrical conductivity through the Lorenz number (L) in the Wiedemann–Franz law. We have observed that, both σel\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sigma _\mathrm{el}$$\end{document} and κ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\kappa $$\end{document} get increased in the presence of strong magnetic field, and the additional presence of chemical potential further increases their magnitudes, where σel\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sigma _\mathrm{el}$$\end{document} shows decreasing trend with the temperature, opposite to its increasing behavior in the isotropic medium, whereas κ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\kappa $$\end{document} increases slowly with the temperature, contrary to its fast increase in the isotropic medium. The variation in κ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\kappa $$\end{document} explains the decrease of the Knudsen number with the increase of the temperature. However, in the presence of strong magnetic field and finite chemical potential, Ω\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Omega $$\end{document} gets enhanced and approaches unity, thus, the system may move slightly away from the equilibrium state. The Lorenz number (κ/(σelT))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\kappa /(\sigma _\mathrm{el} T))$$\end{document} in the abovementioned regime of strong magnetic field and finite chemical potential shows linear enhancement with the temperature and has smaller magnitude than the isotropic one, thus, it describes the violation of the Wiedemann–Franz law for the hot and dense QCD matter in the presence of a strong magnetic field.
引用
收藏
相关论文
共 50 条
  • [1] Effect of magnetic field on the charge and thermal transport properties of hot and dense QCD matter
    Rath, Shubhalaxmi
    Patra, Binoy Krishna
    [J]. EUROPEAN PHYSICAL JOURNAL C, 2020, 80 (08):
  • [2] Momentum transport properties of a hot and dense QCD matter in a weak magnetic field
    Shubhalaxmi Rath
    Sadhana Dash
    [J]. The European Physical Journal C, 82
  • [3] Momentum transport properties of a hot and dense QCD matter in a weak magnetic field
    Rath, Shubhalaxmi
    Dash, Sadhana
    [J]. EUROPEAN PHYSICAL JOURNAL C, 2022, 82 (09):
  • [4] Viscous properties of hot and dense QCD matter in the presence of a magnetic field
    Rath, Shubhalaxmi
    Patra, Binoy Krishna
    [J]. EUROPEAN PHYSICAL JOURNAL C, 2021, 81 (02):
  • [5] Viscous properties of hot and dense QCD matter in the presence of a magnetic field
    Shubhalaxmi Rath
    Binoy Krishna Patra
    [J]. The European Physical Journal C, 2021, 81
  • [6] QCD properties of hot/dense matter
    Lee, SH
    [J]. NUCLEAR PHYSICS A, 1998, 638 (1-2) : 183C - 194C
  • [7] Anomalous Transport Properties of Dense QCD in a Magnetic Field
    de la Incera, Vivian
    [J]. COMPACT STARS IN THE QCD PHASE DIAGRAM V, 2017, 861
  • [8] Transport Properties in Dense QCD Matter
    Tatsumi, Toshitaka
    Abuki, Hiroaki
    [J]. SYMMETRY-BASEL, 2020, 12 (03):
  • [9] Thermoelectric transport coefficients of hot and dense QCD matter
    Das, Arpan
    Mishra, Hiranmaya
    [J]. EUROPEAN PHYSICAL JOURNAL-SPECIAL TOPICS, 2021, 230 (03): : 607 - 634
  • [10] Thermoelectric transport coefficients of hot and dense QCD matter
    Arpan Das
    Hiranmaya Mishra
    [J]. The European Physical Journal Special Topics, 2021, 230 : 607 - 634