Combining multiple hypothesis testing and affinity propagation clustering leads to accurate, robust and sample size independent classification on gene expression data

被引:0
|
作者
Argiris Sakellariou
Despina Sanoudou
George Spyrou
机构
[1] Biomedical Research Foundation of the Academy of Athens,Biomedical Informatics Unit
[2] National & Kapodistrian Univ. of Athens,Department of Informatics and Telecommunications
[3] National & Kapodistrian Univ. of Athens,Pharmacology Department, Medical School
来源
关键词
Amyotrophic Lateral Sclerosis; Partial Little Square; Random Forest; Duchenne Muscular Dystrophy; True Positive Rate;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
相关论文
共 12 条
  • [1] Combining multiple hypothesis testing and affinity propagation clustering leads to accurate, robust and sample size independent classification on gene expression data
    Sakellariou, Argiris
    Sanoudou, Despina
    Spyrou, George
    [J]. BMC BIOINFORMATICS, 2012, 13
  • [2] Lung Cancer Classification and Gene Selection by Combining Affinity Propagation Clustering and Sparse Group Lasso
    Li, Juntao
    Chang, Mingming
    Gao, Qinghui
    Song, Xuekun
    Gao, Zhiyu
    [J]. CURRENT BIOINFORMATICS, 2020, 15 (07) : 703 - 712
  • [3] Combining Multiple Clustering and Network Analysis for Discoveries in Gene Expression Data
    Alhajj, Sleiman
    Alhajj, Aya
    Ozyer, Sibel Tariyan
    [J]. PROCEEDINGS OF THE 2021 IEEE/ACM INTERNATIONAL CONFERENCE ON ADVANCES IN SOCIAL NETWORKS ANALYSIS AND MINING, ASONAM 2021, 2021, : 502 - 509
  • [4] Optimal sample size for multiple testing:: The case of gene expression microarrays
    Müller, P
    Parmigiani, G
    Robert, C
    Rousseau, J
    [J]. JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2004, 99 (468) : 990 - 1001
  • [5] Hierarchical clustering combining numerical and biological similarities for gene expression data classification
    Bosio, Mattia
    Salembier, Philippe
    Bellot, Pau
    Oliveras-Verges, Albert
    [J]. 2013 35TH ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY (EMBC), 2013, : 584 - 587
  • [6] Clustering by soft-constraint affinity propagation: applications to gene-expression data
    Leone, Michele
    Sumedha
    Weigt, Martin
    [J]. BIOINFORMATICS, 2007, 23 (20) : 2708 - 2715
  • [7] Rough Set based Attribute Clustering for Sample Classification of Gene Expression Data
    Nayak, Rudra Kalyan
    Mishra, Debahuti
    Shaw, Kailash
    Mishra, Sashikala
    [J]. INTERNATIONAL CONFERENCE ON MODELLING OPTIMIZATION AND COMPUTING, 2012, 38 : 1788 - 1792
  • [8] MULTIPLE HYPOTHESIS TESTING ADJUSTED FOR LATENT VARIABLES, WITH AN APPLICATION TO THE AGEMAP GENE EXPRESSION DATA
    Sun, Yunting
    Zhang, Nancy R.
    Owen, Art B.
    [J]. ANNALS OF APPLIED STATISTICS, 2012, 6 (04): : 1664 - 1688
  • [9] Combining multiple perspective as intelligent agents into robust approach for biomarker detection in gene expression data
    Alshalalfa, Mohammed
    Naji, Ghada
    Qabaja, Ala
    Alhajj, Reda
    Rokne, Jon
    [J]. INTERNATIONAL JOURNAL OF DATA MINING AND BIOINFORMATICS, 2011, 5 (03) : 332 - 350
  • [10] pySAPC, a python']python package for sparse affinity propagation clustering: Application to odontogenesis whole genome time series gene-expression data
    Cao, Huojun
    Amendt, Brad A.
    [J]. BIOCHIMICA ET BIOPHYSICA ACTA-GENERAL SUBJECTS, 2016, 1860 (11): : 2613 - 2618