In this paper, we extend a recent one-dimensional isothermal steady-state generalized Darcy model for two-phase flow in the porous cathode gas diffusion layer of a polymer electrolyte fuel cell, so as to include the effect of heat transfer. As for the isothermal case, we arrive at either a fixed- or free-boundary problem, depending on the main problem parameters: inlet temperature (Tin\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$T^\mathrm{in}$$\end{document}), inlet water saturation (sin\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$s^\mathrm{in}$$\end{document}), inlet relative humidity (RH), porous medium hydrophobicity and cathode overpotential (η\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\eta $$\end{document}). The inclusion of heat transfer is found to limit the range of values of η,Tin\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\eta ,T^\mathrm{in}$$\end{document} and RH over which two-phase flow can occur, as compared to that predicted by the isothermal model. The ensuing non-isothermal two-phase flow model equations are then computed numerically, with particular care being required for the treatment of an integrably singular inter-phase mass transfer term.