Periodic interpolation and wavelets on sparse grids

被引:0
|
作者
Frauke Sprengel
机构
[1] Universität Rostock,FB Mathematik
来源
Numerical Algorithms | 1998年 / 17卷
关键词
wavelets; multivariate periodic interpolation; Boolean sums; sparse grids; 65T05; 42B99;
D O I
暂无
中图分类号
学科分类号
摘要
Nested spaces of multivariate periodic functions forming a non-stationary multiresolution analysis are investigated. The scaling functions of these spaces are fundamental polynomials of Lagrange interpolation on a sparse grid. The approach based on Boolean sums leads to sample and wavelet spaces of significantly lower dimension and good approximation order. The algorithms for complete decomposition and reconstruction are of simple structure and low complexity.
引用
收藏
页码:147 / 169
页数:22
相关论文
共 50 条