A forecasting method of forest pests based on the rough set and PSO-BP neural network

被引:5
|
作者
Tiecheng Bai
Hongbing Meng
Jianghe Yao
机构
[1] Tarim University,College of Information Engineering
来源
关键词
Insect pests; Forecasting method; Rough set theory; Particle swarm optimization; BP neural network;
D O I
暂无
中图分类号
学科分类号
摘要
In order to improve the forecasting accuracy of the occurrence period of insect pests, this paper proposes a kind of forecasting method based on the combination of rough set theory and improved PSO-BP neural network. It takes insect pests of Euphrates poplar forests as the object of study. First, an attribute reduction algorithm of rough set is used to eliminate redundancy attributes. Input factors of the forecasting model of insect pests (temperature, humidity and rainfall) can be reduced from sixteen to eight. Then, particle swarm optimization (PSO) algorithm is improved using the inertia weight, and weights and thresholds of BP neural network are optimized using the improved PSO algorithm. Finally, the forecasting model of insect pests is established using rough set and an improved PSO-BP network. The test results show that rough set theory can effectively reduce the feature dimension and the improved PSO algorithm can reduce the iteration times, with an average accuracy of 94.8 %. This method can provide the technical support for the prevention and control of the insect pests of the Euphrates poplar forests.
引用
收藏
页码:1699 / 1707
页数:8
相关论文
共 50 条
  • [1] A forecasting method of forest pests based on the rough set and PSO-BP neural network
    Bai, Tiecheng
    Meng, Hongbing
    Yao, Jianghe
    NEURAL COMPUTING & APPLICATIONS, 2014, 25 (7-8): : 1699 - 1707
  • [2] The Load Forecasting Using the PSO-BP Neural Network and Wavelet Transform
    Liu Mengliang
    Gao Rong
    Wang Xiuhong
    PROCEEDINGS OF THE 27TH CHINESE CONTROL CONFERENCE, VOL 4, 2008, : 34 - +
  • [3] BFG holder forecasting model and application based on PSO-BP neural network model
    Wei, Jinyu
    Zhang, Wei
    Li, Xin
    Zhongnan Daxue Xuebao (Ziran Kexue Ban)/Journal of Central South University (Science and Technology), 2013, 44 (SUPPL.1): : 266 - 270
  • [4] Based on the EMD and PSO-BP neural network of short-term load forecasting
    Sha, Feng
    Zhu, Feng
    Guo, Shunnan
    Gao, Jiantong
    ADVANCES IN POWER AND ELECTRICAL ENGINEERING, PTS 1 AND 2, 2013, 614-615 : 1872 - +
  • [5] PSO-BP Combined Artificial Neural Network Method Research
    Liu, Guiling
    Gao, Feng
    ADVANCES IN CIVIL AND INDUSTRIAL ENGINEERING, PTS 1-4, 2013, 353-356 : 3537 - 3540
  • [6] Temperature compensation method of laser gyroscope based on PSO-BP neural network
    Zhang W.
    Wang T.
    Wang L.
    Tao T.
    Zhongguo Guanxing Jishu Xuebao/Journal of Chinese Inertial Technology, 2022, 30 (05): : 652 - 657
  • [7] Pavement Roughness Detection Method Based on Smartphone and PSO-BP Neural Network
    Zhang, Jinxi
    Cao, Qianqian
    Ding, Yongjie
    13TH INTERNATIONAL CONFERENCE ON ROAD AND AIRFIELD PAVEMENT TECHNOLOGY 2023, 2023, : 883 - 893
  • [8] Classification of Fabric Defect Based on PSO-BP Neural Network
    Liu Suyi
    Liu Jingjing
    Zhang Leduo
    SECOND INTERNATIONAL CONFERENCE ON GENETIC AND EVOLUTIONARY COMPUTING: WGEC 2008, PROCEEDINGS, 2008, : 137 - +
  • [9] Vegetable Price Prediction Based on PSO-BP Neural Network
    Ye Lu
    Li Yuping
    Liang Weihong
    Song Qidao
    Liu Yanqun
    Qin Xiaoli
    PROCEEDINGS OF 8TH INTERNATIONAL CONFERENCE ON INTELLIGENT COMPUTATION TECHNOLOGY AND AUTOMATION (ICICTA 2015), 2015, : 1093 - 1096
  • [10] Classification of flour types based on PSO-BP neural network
    Chen, Maomao
    Liu, Mingliang
    PROCEEDINGS OF THE 30TH CHINESE CONTROL AND DECISION CONFERENCE (2018 CCDC), 2018, : 2591 - 2595