A Review on Challenges and Future Research Directions for Machine Learning-Based Intrusion Detection System

被引:0
|
作者
Ankit Thakkar
Ritika Lohiya
机构
[1] Nirma University,Institute of Technology
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Research in the field of Intrusion Detection is focused on developing an efficient strategy that can identify network attacks. One of the important strategies is to supervise the network events for identifying attacks. Security mechanisms such as Intrusion Detection Systems (IDS) have been used for securing the network infrastructure and network communication against network attacks, wherein Machine Learning (ML) techniques have a notable contribution to design an efficient IDS. However, dependence on modern communication technology and collateral rise in the network attacks affect the performance of ML techniques. In this article, we discuss a detailed overview of intrusion detection using ML techniques. We discuss the steps performed by ML techniques for detecting and classifying intrusions. Moreover, our paper provides a comprehensive overview of state-of-the-art ML techniques used for intrusion detection and classification along with their advantages and limitations. The paper also summarizes research work performed in the field of ML-based IDS. In this paper, we aim to discuss various challenges faced by ML-based IDS. We further discuss future research directions that can be considered for enhancing the efficiency and effectiveness of IDS. Our review will serve as an incentive to novice researchers who aim to work in the field of ML-based IDS.
引用
收藏
页码:4245 / 4269
页数:24
相关论文
共 50 条
  • [1] A Review on Challenges and Future Research Directions for Machine Learning-Based Intrusion Detection System
    Thakkar, Ankit
    Lohiya, Ritika
    ARCHIVES OF COMPUTATIONAL METHODS IN ENGINEERING, 2023, 30 (07) : 4245 - 4269
  • [2] Review Federated Learning for intrusion detection system: Concepts, challenges and future directions
    Agrawal, Shaashwat
    Sarkar, Sagnik
    Aouedi, Ons
    Yenduri, Gokul
    Piamrat, Kandaraj
    Alazab, Mamoun
    Bhattacharya, Sweta
    Maddikunta, Praveen Kumar Reddy
    Gadekallu, Thippa Reddy
    COMPUTER COMMUNICATIONS, 2022, 195 : 346 - 361
  • [3] A review of Machine Learning-based zero-day attack detection: Challenges and future directions
    Guo, Yang
    COMPUTER COMMUNICATIONS, 2023, 198 : 175 - 185
  • [4] MACHINE LEARNING-BASED ANDROID INTRUSION DETECTION SYSTEM
    Tahreem, Madiha
    Andleeb, Ifrah
    Hussain, Bilal Zahid
    Hameed, Arsalan
    arXiv,
  • [5] Cyber Security Intrusion Detection for Agriculture 4.0: Machine Learning-Based Solutions, Datasets, and Future Directions
    Ferrag, Mohamed Amine
    Shu, Lei
    Friha, Othmane
    Yang, Xing
    IEEE-CAA JOURNAL OF AUTOMATICA SINICA, 2022, 9 (03) : 407 - 436
  • [6] Cyber Security Intrusion Detection for Agriculture 4.0: Machine Learning-Based Solutions, Datasets,and Future Directions
    Mohamed Amine Ferrag
    Lei Shu
    Othmane Friha
    Xing Yang
    IEEE/CAAJournalofAutomaticaSinica, 2022, 9 (03) : 407 - 436
  • [7] An Intrusion Detection System for the Internet of Things Based on Machine Learning: Review and Challenges
    Adnan, Ahmed
    Muhammed, Abdullah
    Abd Ghani, Abdul Azim
    Abdullah, Azizol
    Hakim, Fahrul
    SYMMETRY-BASEL, 2021, 13 (06):
  • [8] Review of Machine Learning-Based Intrusion Detection Techniques for MANETs
    Hamza, Fouziah
    Vigila, S. Maria Celestin
    COMPUTING AND NETWORK SUSTAINABILITY, 2019, 75
  • [9] A Review of Intrusion Detection System in IoT with Machine Learning Approach: Current and Future Research
    Nugroho, Eddy Prasetyo
    Djatna, Taufik
    Sitanggang, Imas Sukaesih
    Buono, Agus
    Hermadi, Irman
    2020 6TH INTERNATIONAL CONFERENCE ON SCIENCE IN INFORMATION TECHNOLOGY (ICSITECH): EMBRACING INDUSTRY 4.0: TOWARDS INNOVATION IN DISASTER MANAGEMENT, 2020, : 138 - 143
  • [10] A Review of Intrusion Detection Systems Using Machine and Deep Learning in Internet of Things: Challenges, Solutions and Future Directions
    Asharf, Javedz
    Moustafa, Nour
    Khurshid, Hasnat
    Debie, Essam
    Haider, Waqas
    Wahab, Abdul
    ELECTRONICS, 2020, 9 (07)