Combined constraints on modified Chaplygin gas model from cosmological observed data: Markov Chain Monte Carlo approach

被引:0
|
作者
Jianbo Lu
Lixin Xu
Yabo Wu
Molin Liu
机构
[1] Liaoning Normal University,Department of Physics
[2] Dalian University of Technology,School of Physics and Optoelectronic Technology
[3] Xinyang Normal University,College of Physics and Electronic Engineering
来源
关键词
Modified Chaplygin gas (MCG); Unification of dark matter and dark energy;
D O I
暂无
中图分类号
学科分类号
摘要
We use the Markov Chain Monte Carlo method to investigate a global constraints on the modified Chaplygin gas (MCG) model as the unification of dark matter and dark energy from the latest observational data: the Union2 dataset of type supernovae Ia (SNIa), the observational Hubble data (OHD), the cluster X-ray gas mass fraction, the baryon acoustic oscillation (BAO), and the cosmic microwave background (CMB) data. In a flat universe, the constraint results for MCG model are, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\Omega_{b}h^{2}\,{=}\,0.02263^{+0.00184}_{-0.00162} (1\sigma)^{+0.00213}_{-0.00195} (2\sigma)}$$\end{document}, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${B_{s}\,{=}\,0.7788^{+0.0736}_{-0.0723}(1\sigma)^{+0.0918}_{-0.0904} (2\sigma)}$$\end{document}, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\alpha\,{=}\,0.1079^{+0.3397}_{-0.2539} (1\sigma)^{+0.4678}_{-0.2911} (2\sigma)}$$\end{document}, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${B\,{=}\,0.00189^{+0.00583}_{-0.00756}(1\sigma)^{+0.00660}_{-0.00915} (2\sigma)}$$\end{document}, and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${H_{0}=70.711^{+4.188}_{-3.142} (1\sigma)^{+5.281}_{-4.149}(2\sigma)}$$\end{document}.
引用
收藏
页码:819 / 832
页数:13
相关论文
共 50 条
  • [1] Combined constraints on modified Chaplygin gas model from cosmological observed data: Markov Chain Monte Carlo approach
    Lu, Jianbo
    Xu, Lixin
    Wu, Yabo
    Liu, Molin
    GENERAL RELATIVITY AND GRAVITATION, 2011, 43 (03) : 819 - 832
  • [2] Cosmological constraints on generalized Chaplygin gas model: Markov Chain Monte Carlo approach
    Xu, Lixin
    Lu, Jianbo
    JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS, 2010, (03):
  • [3] Constraints on the generalized Chaplygin gas model including gamma-ray bursts via a Markov Chain Monte Carlo approach
    Liang, N.
    Xu, L.
    Zhu, Z. -H.
    ASTRONOMY & ASTROPHYSICS, 2011, 527
  • [4] Observational constraints in modified Chaplygin gas cosmological model
    Shukla, A. K.
    Raushan, R.
    Mandal, S.
    Chaubey, R.
    ASTRONOMY AND COMPUTING, 2023, 44
  • [5] Cosmological constraints on the variable modified Chaplygin gas model by using MCMC approach
    Chen, Jian-bin
    Liu, Zhen-qi
    Xing, Lili
    INTERNATIONAL JOURNAL OF MODERN PHYSICS D, 2015, 24 (08):
  • [6] Modified Markov chain Monte Carlo method for dynamic data integration using streamline approach
    Efendiev, Yalchin
    Datta-Gupta, Akhil
    Ma, Xianlin
    Mallick, Bani
    MATHEMATICAL GEOSCIENCES, 2008, 40 (02) : 213 - 232
  • [7] Modified Markov Chain Monte Carlo Method for Dynamic Data Integration Using Streamline Approach
    Yalchin Efendiev
    Akhil Datta-Gupta
    Xianlin Ma
    Bani Mallick
    Mathematical Geosciences, 2008, 40 : 213 - 232
  • [8] A MARGINALISED MARKOV CHAIN MONTE CARLO APPROACH FOR MODEL BASED ANALYSIS OF EEG DATA
    Hettiarachchi, Imali
    Mohamed, Shady
    Nahavandi, Saeid
    2012 9TH IEEE INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (ISBI), 2012, : 1539 - 1542
  • [9] Latest observational constraints to the ghost dark energy model by using the Markov chain Monte Carlo approach
    Feng, Chao-Jun
    Li, Xin-Zhou
    Shen, Xian-Yong
    PHYSICAL REVIEW D, 2013, 87 (02)
  • [10] Improving Markov Chain Monte Carlo model search for data mining
    Giudici, P
    Castelo, R
    MACHINE LEARNING, 2003, 50 (1-2) : 127 - 158