Variable Tap-Length LMS Algorithm with Adaptive Step Size

被引:0
|
作者
Ying Wei
Zhibin Yan
机构
[1] Harbin Institute of Technology,Center for Mathematics and Interdisciplinary Sciences
[2] Heilongjiang University,Key Laboratory of Mechatronics
关键词
Adaptive filter; Variable tap-length algorithm; Fractional tap-length algorithm; Tap-length adaptation step size; Convergence rate; Steady-state fluctuation;
D O I
暂无
中图分类号
学科分类号
摘要
The fractional tap-length least mean square adaptive algorithm exhibits robustness and low complexity in adaptive filter design. This algorithm employs one parameter γ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma $$\end{document}, the tap-length adaptation step size, to balance convergence rate and steady-state tap-length fluctuation. From the viewpoint of threshold parameter, we justify that a time-varying γ(n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma (n)$$\end{document} with large value at transient stage and small value at steady stage, instead of a fixed one, can provide both fast convergence rate and small fluctuation. Then, one time-varying strategy for γ(n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma (n)$$\end{document} is suggested, where the parameter is adjusted by the difference between squared output error and squared segmented estimation error, and is limited by a sigmoid function. This strategy is motivated by the recognition that such difference indicates transient or steady state.
引用
收藏
页码:2815 / 2827
页数:12
相关论文
共 50 条
  • [1] Variable Tap-Length LMS Algorithm with Adaptive Step Size
    Wei, Ying
    Yan, Zhibin
    [J]. CIRCUITS SYSTEMS AND SIGNAL PROCESSING, 2017, 36 (07) : 2815 - 2827
  • [2] Variable Tap-length LMS Algorithm with Variable Tap-length Adaptation Step size
    Wei, Ying
    Yan, Zhibin
    [J]. PROCEEDINGS OF THE 28TH CHINESE CONTROL AND DECISION CONFERENCE (2016 CCDC), 2016, : 3748 - 3751
  • [3] A New Variable Tap-length LMS Algorithm With Variable Step Size
    Li, Ning
    Zhan, Yonggang
    Hao, Yanling
    [J]. 2008 INTERNATIONAL CONFERENCE ON MECHATRONICS AND AUTOMATION: (ICMA), VOLS 1 AND 2, 2008, : 524 - 528
  • [4] Variable tap-length LMS adaptive filtering algorithm
    Lin, Chuan
    Feng, Quan-Yuan
    [J]. Dianzi Yu Xinxi Xuebao/Journal of Electronics and Information Technology, 2008, 30 (07): : 1676 - 1679
  • [5] An improved variable tap-length LMS algorithm
    Li, Ning
    Zhang, Yonggang
    Zhao, Yuxin
    Hao, Yanling
    [J]. SIGNAL PROCESSING, 2009, 89 (05) : 908 - 912
  • [6] Convex combination of adaptive filters for a variable tap-length LMS algorithm
    Zhang, Yonggang
    Chambers, Jonathon A.
    [J]. IEEE SIGNAL PROCESSING LETTERS, 2006, 13 (10) : 628 - 631
  • [7] Variable Tap-Length Algorithm Using Lattice Structured LMS Adaptive Filters
    Alsaid, Salem
    Abdel-Raheem, Esam
    Khalid, Mohammed
    Mayyas, Khaled
    [J]. 2017 IEEE 30TH CANADIAN CONFERENCE ON ELECTRICAL AND COMPUTER ENGINEERING (CCECE), 2017,
  • [8] Variable tap-length linear equaliser with variable tap-length adaptation step-size
    Liu, Zhiyong
    [J]. ELECTRONICS LETTERS, 2014, 50 (08) : 587 - 588
  • [9] A New Variable Tap-Length and Step-Size FxLMS Algorithm
    Chang, Dah-Chung
    Chu, Fei-Tao
    [J]. IEEE SIGNAL PROCESSING LETTERS, 2013, 20 (11) : 1122 - 1125
  • [10] A new variable tap-length LMS algorithm with variable error width
    Li, Ning
    Zhang, Yonggang
    Hao, Yanling
    Zhao, Yuxin
    [J]. ICSP: 2008 9TH INTERNATIONAL CONFERENCE ON SIGNAL PROCESSING, VOLS 1-5, PROCEEDINGS, 2008, : 276 - 279