No arbitrage of the first kind and local martingale numéraires

被引:0
|
作者
Yuri Kabanov
Constantinos Kardaras
Shiqi Song
机构
[1] Université de Franche-Comté,Laboratoire de Mathématiques
[2] Higher School of Economics,International Laboratory of Quantitative Finance
[3] London School of Economics,undefined
[4] Université d’Evry Val d’Essonne,undefined
来源
Finance and Stochastics | 2016年 / 20卷
关键词
Arbitrage; Viability; Fundamental theorem of asset pricing; Numéraire; Local martingale deflator; -martingale; 91G10; 60G44; C60; G13;
D O I
暂无
中图分类号
学科分类号
摘要
A supermartingale deflator (resp. local martingale deflator) multiplicatively transforms nonnegative wealth processes into supermartingales (resp. local martingales). A supermartingale numéraire (resp. local martingale numéraire) is a wealth process whose reciprocal is a supermartingale deflator (resp. local martingale deflator). It has been established in previous works that absence of arbitrage of the first kind (NA1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mbox{NA}_{1}$\end{document}) is equivalent to the existence of the (unique) supermartingale numéraire, and further equivalent to the existence of a strictly positive local martingale deflator; however, under NA1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mbox{NA}_{1}$\end{document}, a local martingale numéraire may fail to exist. In this work, we establish that under NA1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mbox{NA}_{1}$\end{document}, a supermartingale numéraire under the original probability P\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$P$\end{document} becomes a local martingale numéraire for equivalent probabilities arbitrarily close to P\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$P$\end{document} in the total variation distance.
引用
收藏
页码:1097 / 1108
页数:11
相关论文
共 50 条