Nonparametric estimation of the ROC curve based on smoothed empirical distribution functions

被引:0
|
作者
Alicja Jokiel-Rokita
Michał Pulit
机构
[1] Wrocław University of Technology,Institute of Mathematics and Computer Science
来源
Statistics and Computing | 2013年 / 23卷
关键词
Receiver operating characteristic (ROC) curve; Empirical distribution function; Nonparametric estimation;
D O I
暂无
中图分类号
学科分类号
摘要
The receiver operating characteristic (ROC) curve is a graphical representation of the relationship between false positive and true positive rates. It is a widely used statistical tool for describing the accuracy of a diagnostic test. In this paper we propose a new nonparametric ROC curve estimator based on the smoothed empirical distribution functions. We prove its strong consistency and perform a simulation study to compare it with some other popular nonparametric estimators of the ROC curve. We also apply the proposed method to a real data set.
引用
收藏
页码:703 / 712
页数:9
相关论文
共 50 条
  • [1] Nonparametric estimation of the ROC curve based on smoothed empirical distribution functions
    Jokiel-Rokita, Alicja
    Pulit, Micha
    STATISTICS AND COMPUTING, 2013, 23 (06) : 703 - 712
  • [2] Nonparametric estimation of the ROC curve based on the Bernstein polynomial
    Wang, Xiaoguang
    Song, Lixin
    Sun, Leyuan
    Gao, Hang
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2019, 203 : 39 - 56
  • [3] Smoothed jackknife empirical likelihood method for ROC curve
    Gong, Yun
    Peng, Liang
    Qi, Yongcheng
    JOURNAL OF MULTIVARIATE ANALYSIS, 2010, 101 (06) : 1520 - 1531
  • [4] Smoothed circulas: Nonparametric estimation of circular cumulative distribution functions and circulas
    Ameijeiras-alonso, Jose
    Gijbels, Irene
    BERNOULLI, 2024, 30 (04) : 2747 - 2769
  • [5] Nonparametric estimation of the threshold at an operating point on the ROC curve
    Yousef, Waleed A.
    Kundu, Subrata
    Wagner, Robert F.
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2009, 53 (12) : 4370 - 4383
  • [6] Smoothed empirical likelihood inference for ROC curve in the presence of missing biomarker values
    Cheng, Weili
    Tang, Niansheng
    BIOMETRICAL JOURNAL, 2020, 62 (04) : 1038 - 1059
  • [7] General nonparametric ROC curve comparison
    Pablo Martínez-Camblor
    Carlos Carleos
    Norberto Corral
    Journal of the Korean Statistical Society, 2013, 42 : 71 - 81
  • [8] General nonparametric ROC curve comparison
    Martinez-Camblor, Pablo
    Carleos, Carlos
    Corral, Norberto
    JOURNAL OF THE KOREAN STATISTICAL SOCIETY, 2013, 42 (01) : 71 - 81
  • [9] Roc curve estimation based on local smoothing
    Qiu, PH
    Le, C
    JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2001, 70 (01) : 55 - 69
  • [10] Nonparametric estimation of smoothed principal components analysis of sampled noisy functions
    Cardot, H
    JOURNAL OF NONPARAMETRIC STATISTICS, 2000, 12 (04) : 503 - 538