In this paper, an efficient construction of multicast key distribution schemes based on semantically secure symmetric-key encryption schemes and cryptographically strong pseudo-random number generators is presented and analyzed. The proposed scheme is provably secure against adaptive adversaries leveraging the security amplification technique defined over the logical key hierarchy structures. Our protocol tolerates any coalition of revoked users; in particular, we do not assume any limit on the size or structure of the coalition. The proposed scheme is efficient as a performance of Join or Leave procedure requires 2 log(N) multicast activities defined over a sibling ancestor node set, 2 log(N) internal state updates of the underlying pseudo-random number generator and 2 log(N) symmetric-key encryption activities for N users in a session.