Ultra-low Thermal Conductivity in Si/Ge Hierarchical Superlattice Nanowire

被引:0
|
作者
Xin Mu
Lili Wang
Xueming Yang
Pu Zhang
Albert C. To
Tengfei Luo
机构
[1] University of Notre Dame,Department of Aerospace and Mechanical Engineering
[2] Center for Sustainable Energy at Notre Dame,Department of Mechanical Engineering and Materials Science
[3] University of Notre Dame,Department of Power Engineering
[4] University of Pittsburgh,undefined
[5] School of Fundamental Studies,undefined
[6] Shanghai University of Engineering Science,undefined
[7] North China Electric Power University,undefined
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Due to interfacial phonon scattering and nanoscale size effect, silicon/germanium (Si/Ge) superlattice nanowire (SNW) can have very low thermal conductivity, which is very attractive for thermoelectrics. In this paper, we demonstrate using molecular dynamics simulations that the already low thermal conductivity of Si/Ge SNW can be further reduced by introducing hierarchical structure to form Si/Ge hierarchical superlattice nanowire (H-SNW). The structural hierarchy introduces defects to disrupt the periodicity of regular SNW and scatters coherent phonons, which are the key contributors to thermal transport in regular SNW. Our simulation results show that periodically arranged defects in Si/Ge H-SNW lead to a ~38% reduction of the already low thermal conductivity of regular Si/Ge SNW. By randomizing the arrangement of defects and imposing additional surface complexities to enhance phonon scattering, further reduction in thermal conductivity can be achieved. Compared to pure Si nanowire, the thermal conductivity reduction of Si/Ge H-SNW can be as large as ~95%. It is concluded that the hierarchical structuring is an effective way of reducing thermal conductivity significantly in SNW, which can be a promising path for improving the efficiency of Si/Ge-based SNW thermoelectrics.
引用
收藏
相关论文
共 50 条
  • [1] Ultra-low Thermal Conductivity in Si/Ge Hierarchical Superlattice Nanowire
    Mu, Xin
    Wang, Lili
    Yang, Xueming
    Zhang, Pu
    To, Albert C.
    Luo, Tengfei
    [J]. SCIENTIFIC REPORTS, 2015, 5
  • [2] Correction: Corrigendum: Ultra-low Thermal Conductivity in Si/Ge Hierarchical Superlattice Nanowire
    Xin Mu
    Lili Wang
    Xueming Yang
    Pu Zhang
    Albert C. To
    Tengfei Luo
    [J]. Scientific Reports, 6
  • [3] Ultra-low Thermal Conductivity in Si/Ge Hierarchical Superlattice Nanowire (vol 5, 16697, 2015)
    Mu, Xin
    Wang, Lili
    Yang, Xueming
    Zhang, Pu
    To, Albert C.
    Luo, Tengfei
    [J]. SCIENTIFIC REPORTS, 2016, 6
  • [4] Ultra-low thermal conductivity of high-interface density Si/Ge amorphous multilayers
    Goto, Masahiro
    Xu, Yibin
    Zhan, Tianzhuo
    Sasaki, Michiko
    Nishimura, Chikashi
    Kinoshita, Yohei
    Ishikiriyama, Mamoru
    [J]. APPLIED PHYSICS EXPRESS, 2018, 11 (04)
  • [5] Anisotropic thermal conductivity of a Si Ge superlattice
    Borca-Tasciuc, T
    Song, D
    Liu, JL
    Chen, G
    Wang, KL
    Sun, X
    Dresselhaus, MS
    Radetic, T
    Gronsky, R
    [J]. THERMOELECTRIC MATERIALS 1998 - THE NEXT GENERATION MATERIALS FOR SMALL-SCALE REFRIGERATION AND POWER GENERATION APPLICATIONS, 1999, 545 : 473 - 478
  • [6] Si/Ge Superlattice Nanowires with Ultralow Thermal Conductivity
    Hu, Ming
    Poulikakos, Dimos
    [J]. NANO LETTERS, 2012, 12 (11) : 5487 - 5494
  • [7] Optimization of Si PnC MEMS nanowires for ultra-low thermal conductivity
    Hwang, Sunghyun
    Overmeyer, James D.
    Yousuf, S. M. Enamul Hoque
    Carr, William N.
    Feng, Philip X. -L.
    Yoon, Yong-Kyu
    [J]. 2023 IEEE 73RD ELECTRONIC COMPONENTS AND TECHNOLOGY CONFERENCE, ECTC, 2023, : 2150 - 2153
  • [8] A reduction of thermal conductivity of non-periodic Si/Ge superlattice nanowire: Molecular dynamics simulation
    Zhang, Chun Wei
    Zhou, Hai
    Zeng, Yong
    Zheng, Lei
    Zhan, Yue Lin
    Bi, Ke Dong
    [J]. INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2019, 132 : 681 - 688
  • [9] Theoretical phonon thermal conductivity of Si/Ge superlattice nanowires
    Dames, C
    Chen, G
    [J]. JOURNAL OF APPLIED PHYSICS, 2004, 95 (02) : 682 - 693
  • [10] Ultra-low thermal conductivity in graphene nanomesh
    Feng, Tianli
    Ruan, Xiulin
    [J]. CARBON, 2016, 101 : 107 - 113