Monostable traveling waves for a time-periodic and delayed nonlocal reaction–diffusion equation

被引:0
|
作者
Panxiao Li
Shi-Liang Wu
机构
[1] Xidian University,School of Mathematics and Statistics
关键词
Nonlocal periodic model; Periodic traveling wave; Uniqueness; Stability; Monostable nonlinearity; 35K57; 35B40; 92D25;
D O I
暂无
中图分类号
学科分类号
摘要
This paper is concerned with a time-periodic and delayed nonlocal reaction–diffusion population model with monostable nonlinearity. Under quasi-monotone or non-quasi-monotone assumptions, it is known that there exists a critical wave speed c∗>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$c_*>0$$\end{document} such that a periodic traveling wave exists if and only if the wave speed is above c∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$c_*$$\end{document}. In this paper, we first prove the uniqueness of non-critical periodic traveling waves regardless of whether the model is quasi-monotone or not. Further, in the quasi-monotone case, we establish the exponential stability of non-critical periodic traveling fronts. Finally, we illustrate the main results by discussing two types of death and birth functions arising from population biology.
引用
收藏
相关论文
共 50 条