Granular temperature in a gas fluidized bed

被引:0
|
作者
Mark J. Biggs
Don Glass
L. Xie
Vladimir Zivkovic
Alex Buts
M. A. Curt Kounders
机构
[1] University of Edinburgh,Institute for Materials and Processes
[2] Kingston University,School of Mathematics
来源
Granular Matter | 2008年 / 10卷
关键词
Granular temperature; Velocity fluctuations; Kinetic theory; Erosion; Heat transfer; Granulation; Diffusing wave spectroscopy; Fluidized bed;
D O I
暂无
中图分类号
学科分类号
摘要
The mean square of particle velocity fluctuations, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\delta v^{2}$$\end{document} , which is directly related to the so-called granular temperature, plays an important role in the flow, mixing, segregation and attrition phenomena of particulate systems and associated theories. It is, therefore, important to be able to measure this quantity. We report here in detail our use of diffusing wave spectroscopy (DWS) to measure the mean square particle velocity fluctuations for a 2D non-circulating gas fluidized bed of hollow glass particles whose mean diameter and effective density are 60 \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\upmu$$\end{document} m and 200 kg/m3, respectively. Mean square particle velocity fluctuations were observed to increase with superficial velocity, Us, beyond the minimum fluidization velocity. Following the uniform fluidization theory of Batchelor (1988), the function \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f{\left(\phi \right)}$$\end{document} in the expression \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\delta v^{2} = f{\left(\phi \right)}U^{2}_{\rm s}$$\end{document} was also determined and shown to increase from zero at a solids loading of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\phi \approx 0.33$$\end{document} to a maximum at \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\phi \approx 0.4$$\end{document} before decreasing again to zero at \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\phi \approx 0.53$$\end{document} . The spatial variation of the mean square particle velocity fluctuations was also determined and shown to be approximately symmetrical about the centreline where it is also maximal, and to increase with height above the distributor.
引用
收藏
页码:63 / 73
页数:10
相关论文
共 50 条
  • [1] Granular temperature in a gas fluidized bed
    Biggs, Mark J.
    Glass, Don
    Xie, L.
    Zivkovic, Vladimir
    Buts, Alex
    Kounders, M. A. Curt
    [J]. GRANULAR MATTER, 2008, 10 (02) : 63 - 73
  • [2] Gas flow patterns in a granular fluidized bed
    Wilson Barros
    [J]. Granular Matter, 2024, 26
  • [3] Gas flow patterns in a granular fluidized bed
    Barros Jr, Wilson
    [J]. GRANULAR MATTER, 2024, 26 (02)
  • [4] Granular temperature distribution in a gas fluidized bed of hollow microparticles prior to onset of bubbling
    Xie, L
    Biggs, MJ
    Glass, D
    McLeod, AS
    Egelhaaf, SU
    Petekidis, G
    [J]. EUROPHYSICS LETTERS, 2006, 74 (02): : 268 - 274
  • [5] Particle granular temperature in gas fluidized beds
    Cody, GD
    Goldfarb, DJ
    Storch, GV
    Norris, AN
    [J]. POWDER TECHNOLOGY, 1996, 87 (03) : 211 - 232
  • [6] Influence of the Granular Temperature in the Numerical Simulation of Gas-Solid Flow in a Bubbling Fluidized Bed
    Mineto, Andreza Tangerino
    De Souza Braun, Meire Pereira
    Navarro, Helio Aparecido
    Cabezas-Gomez, Luben
    [J]. CHEMICAL ENGINEERING COMMUNICATIONS, 2014, 201 (08) : 1003 - 1020
  • [7] NMR measurements of grain and gas motion in a gas-fluidized granular bed
    Candela, D.
    Huan, C.
    Facto, K.
    Wang, R.
    Mair, R. W.
    Walsworth, R. L.
    [J]. GRANULAR MATTER, 2007, 9 (05) : 331 - 335
  • [8] NMR measurements of grain and gas motion in a gas-fluidized granular bed
    D. Candela
    C. Huan
    K. Facto
    R. Wang
    R. W. Mair
    R. L. Walsworth
    [J]. Granular Matter, 2007, 9 : 331 - 335
  • [9] Mixing Behaviors of Wet Granular Materials in Gas Fluidized Bed Systems
    Lim, Eldin Wee Chuan
    Tan, Reginald Beng Hee
    Xiao, Zongyuan
    [J]. AICHE JOURNAL, 2013, 59 (11) : 4058 - 4067
  • [10] Discrete particle modeling of granular temperature distribution in a bubbling fluidized bed
    Niels Deen
    Martin van Sint Annaland
    Hans Kuipers
    [J]. Particuology, 2012, 10 (04) : 428 - 437