Weak covering and the tree property

被引:0
|
作者
Ralf-Dieter Schindler
机构
[1] Mathematisches Institut,
[2] Universität Bonn,undefined
[3] Beringstr. 4,undefined
[4] D-53115 Bonn,undefined
[5] Germany. e-mail: rds@math.uni-bonn.de ,undefined
[6] Mathematics Department,undefined
[7] University of California at Berkeley,undefined
[8] Berkeley,undefined
[9] CA 94720,undefined
[10] USA. e-mail: rds@math.berkeley.edu ,undefined
来源
关键词
Mathematics Subject Classification (1991):03E35, 03E45, 03E55.;
D O I
暂无
中图分类号
学科分类号
摘要
Suppose that there is no transitive model of ZFC + there is a strong cardinal, and let K denote the core model. It is shown that if \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $\delta$\end{document} has the tree property then \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $\delta^{+K} = \delta^+$\end{document} and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $\delta$\end{document} is weakly compact in K.
引用
收藏
页码:515 / 520
页数:5
相关论文
共 50 条
  • [1] Weak covering and the tree property
    Schindler, RD
    ARCHIVE FOR MATHEMATICAL LOGIC, 1999, 38 (08) : 515 - 520
  • [2] A Weak Covering Property Which Implies Isocompactness
    吴利生
    苏州大学学报(自然科学), 1988, (04) : 473 - 476
  • [3] CUSHIONING-TYPE WEAK COVERING PROPERTY
    DAVIS, SW
    PACIFIC JOURNAL OF MATHEMATICS, 1979, 80 (02) : 359 - 370
  • [4] Induced Tree Covering and the Generalized Yutsis Property
    Cunha, Luis
    Duarte, Gabriel
    Protti, Fabio
    Nogueira, Loana
    Souza, Ueverton
    LATIN 2024: THEORETICAL INFORMATICS, PT II, 2024, 14579 : 147 - 161
  • [5] Induced tree covering and the generalized Yutsis property
    Cunha, Luis
    Duarte, Gabriel
    Protti, Fabio
    Nogueira, Loana
    Souza, Ueverton
    JOURNAL OF COMPUTER AND SYSTEM SCIENCES, 2025, 151
  • [6] The strong tree property and weak square
    Hayut, Yair
    Unger, Spencer
    MATHEMATICAL LOGIC QUARTERLY, 2017, 63 (1-2) : 150 - 154
  • [7] Weak covering properties of weak topologies
    Dow, A
    Junnila, H
    Pelant, J
    PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 1997, 75 : 349 - 368
  • [8] WEAK COVERING RELATIONS
    LAFFOND, G
    LAINE, J
    THEORY AND DECISION, 1994, 37 (03) : 245 - 265
  • [9] On weak square, approachability, the tree property, and failures of SCH in a choiceless context
    Apter, Arthur W.
    MATHEMATICAL LOGIC QUARTERLY, 2020, 66 (01) : 115 - 120
  • [10] Weak separation axioms and weak covering properties
    Hung, H. H.
    TOPOLOGY AND ITS APPLICATIONS, 2011, 158 (15) : 1997 - 2004